Artículo
Hochschild and cyclic homology of Yang–Mills algebras
Fecha de publicación:
04/2012
Editorial:
De Gruyter
Revista:
Journal Fur Die Reine Und Angewandte Mathematik
ISSN:
0075-4102
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang–Mills algebras YM(n) (n ∈ ℕ≧2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal (n) in (n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group.
Palabras clave:
Yang-Mills
,
Homology Theory
,
Hochschild Homology
,
Cyclic Homology
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Herscovich Ramoneda, Estanislao Benito; Solotar, Andrea Leonor; Hochschild and cyclic homology of Yang–Mills algebras; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2012; 665; 4-2012; 73-156
Compartir
Altmétricas