Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Evaluation of viable dynamic treatment regimes in a sequentially randomized trial of advanced prostate cancer

Wang, Lu; Rotnitzky, Andrea GloriaIcon ; Lin, Xihong; Millikan, Randall; Thall, Peter
Fecha de publicación: 12/2012
Editorial: American Statistical Association
Revista: Journal of The American Statistical Association
ISSN: 0162-1459
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

We present new statistical analyses of data arising from a clinical trial designed to compare two-stage dynamic treatment regimes (DTRs) for advanced prostate cancer. The trial protocol mandated that patients be initially randomized among four chemotherapies, and that those who responded poorly be re-randomized to one of the remaining candidate therapies. The primary aim was to compare the DTRs' overall success rates, with success defined by the occurrence of successful responses in each of two consecutive courses of the patient's therapy. Of the 150 study participants, 47 did not complete their therapy as per the algorithm. However, 35 of them did so for reasons that precluded further chemotherapy, that is, toxicity and/or progressive disease. Consequently, rather than comparing the overall success rates of the DTRs in the unrealistic event that these patients had remained on their assigned chemotherapies, we conducted an analysis that compared viable switch rules defined by the per-protocol rules but with the additional provision that patients who developed toxicity or progressive disease switch to a non-prespecified therapeutic or palliative strategy. This modification involved consideration of bivariate per-course outcomes encoding both efficacy and toxicity.We used numerical scores elicited from the trial's principal investigator to quantify the clinical desirability of each bivariate per-course outcome, and defined one endpoint as their average over all courses of treatment. Two other simpler sets of scores as well as log survival time were also used as endpoints. Estimation of each DTR-specific mean score was conducted using inverse probability weighted methods that assumed that missingness in the 12 remaining dropouts was informative but explainable in that it only depended on past recorded data.We conducted additional worst-and best-case analyses to evaluate sensitivity of our findings to extreme departures from the explainable dropout assumption.
Palabras clave: CAUSAL INFERENCE , EFFICIENCY , INFORMATIVE DROPOUT , INVERSE PROBABILITY WEIGHTING , MARGINAL STRUCTURAL MODELS , OPTIMAL REGIME , SIMULTANEOUS CONFIDENCE INTERVALS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 988.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/199411
DOI: http://dx.doi.org/10.1080/01621459.2011.641416
URL: https://www.tandfonline.com/doi/abs/10.1080/01621459.2011.641416
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Wang, Lu; Rotnitzky, Andrea Gloria; Lin, Xihong; Millikan, Randall; Thall, Peter; Evaluation of viable dynamic treatment regimes in a sequentially randomized trial of advanced prostate cancer; American Statistical Association; Journal of The American Statistical Association; 107; 498; 12-2012; 493-508
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES