Artículo
On the free implicative semilattice extension of a Hilbert algebra
Fecha de publicación:
05/2012
Editorial:
Wiley VCH Verlag
Revista:
Mathematical Logic Quarterly
ISSN:
0942-5616
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Hilbert algebras provide the equivalent algebraic semantics in the sense of Blok and Pigozzi to the implication fragment of intuitionistic logic. They are closely related to implicative semilattices. Porta proved that every Hilbert algebra has a free implicative semilattice extension. In this paper we introduce the notion of an optimal deductive filter of a Hilbert algebra and use it to provide a different proof of the existence of the free implicative semilattice extension of a Hilbert algebra as well as a simplified characterization of it. The optimal deductive filters turn out to be the traces in the Hilbert algebra of the prime filters of the distributive lattice free extension of the free implicative semilattice extension of the Hilbert algebra. To define the concept of optimal deductive filter we need to introduce the concept of a strong Frink ideal for Hilbert algebras which generalizes the concept of a Frink ideal for posets.
Palabras clave:
FREE EXTENSIONS
,
HILBERT ALGEBRAS
,
IMPLICATIVE SEMILATTICES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Celani, Sergio Arturo; Jansana, Ramon; On the free implicative semilattice extension of a Hilbert algebra; Wiley VCH Verlag; Mathematical Logic Quarterly; 58; 3; 5-2012; 188-207
Compartir
Altmétricas