Artículo
Independent sets from an algebraic perspective
Fecha de publicación:
03/2012
Editorial:
World Scientific
Revista:
International Journal of Algebra and Computation
ISSN:
0218-1967
e-ISSN:
1793-6500
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we study the basic problem of counting independent sets in a graph and, in particular, the problem of counting antichains in a finite poset, from an algebraic perspective. We show that neither independence polynomials of bipartite Cohen–Macaulay graphs nor Hilbert series of initial ideals of radical zero-dimensional complete intersections ideals, can be evaluated in polynomial time, unless #P = P. Moreover, we present a family of radical zero-dimensional complete intersection ideals JP associated to a finite poset P, for which we describe a universal Gröbner basis. This implies that the bottleneck in computing the dimension of the quotient by JP (that is, the number of zeros of JP) using Gröbner methods lies in the description of the standard monomials.
Palabras clave:
Ideal
,
Hilbert Function
,
Polynomial Time
,
Groebner Basis
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Dickenstein, Alicia Marcela; Tobis, Enrique Augusto; Independent sets from an algebraic perspective; World Scientific; International Journal of Algebra and Computation; 22; 2; 3-2012; 14-29
Compartir
Altmétricas