Artículo
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
Fecha de publicación:
08/2012
Editorial:
Springer
Revista:
Archive For Rational Mechanics And Analysis
ISSN:
0003-9527
e-ISSN:
1432-0673
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, ut = J ∗u −u := Lu, in an exterior domain, Ω, which excludes one or several holes, and with zero Dirichlet data on RN \Ω. When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves like a function that is L-harmonic, Lu = 0, in the exterior domain and vanishes in its complement. The height of such a function at infinity is determined through a matching procedure with the multiple of the fundamental solution of the heat equation representing the outer behavior. The inner and the outer behaviors can be presented in a unified way through a suitable global approximation.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes; Springer; Archive For Rational Mechanics And Analysis; 205; 2; 8-2012; 673-697
Compartir
Altmétricas