Mostrar el registro sencillo del ítem
dc.contributor.author
Cortiñas, Guillermo Horacio
dc.contributor.author
Thom, Andreas
dc.date.available
2017-07-07T21:08:48Z
dc.date.issued
2012-09
dc.identifier.citation
Cortiñas, Guillermo Horacio; Thom, Andreas; Algebraic geometry of topological spaces I
; Institut Mittag-Leffler; Acta Mathematica (djursholm); 209; 1; 9-2012; 83-131
dc.identifier.issn
0001-5962
dc.identifier.uri
http://hdl.handle.net/11336/19928
dc.description.abstract
We use techniques from both real and complex algebraic geometry to study K-theoretic and related invariants of the algebra C(X) of continuous complex-valued functions on a compact Hausdorff topological space X. For example, we prove a parameterized version of a theorem by Joseph Gubeladze; we show that if M is a countable, abelian, cancellative, torsion-free, semi-normal monoid, and X is contractible, then every finitely generated projective module over C(X)[M] is free. The particular case M=Nn0M=N0n gives a parameterized version of the celebrated theorem proved independently by Daniel Quillen and Andrei Suslin that finitely generated projective modules over a polynomial ring over a field are free. The conjecture of Jonathan Rosenberg which predicts the homotopy invariance of the negative algebraic K-theory of C(X) follows from the particular case M=ZnM=Zn. We also give algebraic conditions for a functor from commutative algebras to abelian groups to be homotopy invariant on C*-algebras, and for a homology theory of commutative algebras to vanish on C*-algebras. These criteria have numerous applications. For example, the vanishing criterion applied to nil K-theory implies that commutative C*-algebras are K-regular. As another application, we show that the familiar formulas of Hochschild–Kostant–Rosenberg and Loday–Quillen for the algebraic Hochschild and cyclic homology of the coordinate ring of a smooth algebraic variety remain valid for the algebraic Hochschild and cyclic homology of C(X). Applications to the conjectures of Beĭlinson-Soulé and Farrell–Jones are also given.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institut Mittag-Leffler
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Projective Modules
dc.subject
Rings of Continuous Functions
dc.subject
K-Theory
dc.subject
Rosenberg'S Conjecture
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Algebraic geometry of topological spaces I
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-07T14:43:20Z
dc.journal.volume
209
dc.journal.number
1
dc.journal.pagination
83-131
dc.journal.pais
Suecia
dc.description.fil
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Thom, Andreas. Universität Leipzig; Alemania
dc.journal.title
Acta Mathematica (djursholm)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11511-012-0082-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://projecteuclid.org/euclid.acta/1485892647
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0912.3635
Archivos asociados