Mostrar el registro sencillo del ítem

dc.contributor.author
Casini, Horacio German  
dc.contributor.author
Huerta, Marina  
dc.date.available
2023-05-30T14:24:15Z  
dc.date.issued
2012-11  
dc.identifier.citation
Casini, Horacio German; Huerta, Marina; Positivity, entanglement entropy, and minimal surfaces; Springer; Journal of High Energy Physics; 2012; 11; 11-2012; 1-37  
dc.identifier.issn
1126-6708  
dc.identifier.uri
http://hdl.handle.net/11336/198940  
dc.description.abstract
The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n → 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
THOOFT AND POLYAKOV LOOPS  
dc.subject
ADS-CFT CORRESPONDENCE  
dc.subject
FIELD THEORIES IN HIGHER DIMENSIONS  
dc.subject
FIELD THEORIES IN LOWER DIMENSIONS  
dc.subject
WILSON  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Positivity, entanglement entropy, and minimal surfaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-05-19T10:55:29Z  
dc.journal.volume
2012  
dc.journal.number
11  
dc.journal.pagination
1-37  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Huerta, Marina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.journal.title
Journal of High Energy Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP11(2012)087  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/JHEP11(2012)087