Mostrar el registro sencillo del ítem
dc.contributor.author
Casini, Horacio German
dc.contributor.author
Huerta, Marina
dc.date.available
2023-05-30T14:24:15Z
dc.date.issued
2012-11
dc.identifier.citation
Casini, Horacio German; Huerta, Marina; Positivity, entanglement entropy, and minimal surfaces; Springer; Journal of High Energy Physics; 2012; 11; 11-2012; 1-37
dc.identifier.issn
1126-6708
dc.identifier.uri
http://hdl.handle.net/11336/198940
dc.description.abstract
The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n → 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
THOOFT AND POLYAKOV LOOPS
dc.subject
ADS-CFT CORRESPONDENCE
dc.subject
FIELD THEORIES IN HIGHER DIMENSIONS
dc.subject
FIELD THEORIES IN LOWER DIMENSIONS
dc.subject
WILSON
dc.subject.classification
Física de Partículas y Campos
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Positivity, entanglement entropy, and minimal surfaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-05-19T10:55:29Z
dc.journal.volume
2012
dc.journal.number
11
dc.journal.pagination
1-37
dc.journal.pais
Alemania
dc.description.fil
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
dc.description.fil
Fil: Huerta, Marina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
dc.journal.title
Journal of High Energy Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP11(2012)087
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/JHEP11(2012)087
Archivos asociados