Artículo
Tannaka theory over Sup-Lattices and Descent for Topoi
Fecha de publicación:
2016
Editorial:
Mount Allison University
Revista:
Theory And Applications Of Categories
ISSN:
1201-561X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider locales B as algebras in the tensor category s` of sup-lattices. We show the equivalence between the Joyal-Tierney descent theorem for open localic surjections shB q −→ E in Galois theory and a Tannakian recognition theorem over s` for the s`-functor Rel(E) Rel(q ∗ ) −→ Rel(shB) ∼= (B-Mod)0 into the s`-category of discrete B-modules. Thus, a new Tannaka recognition theorem is obtained, essentially different from those known so far. This equivalence follows from two independent results. We develop an explicit construction of the localic groupoid G associated by Joyal-Tierney to q, and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf algebroid L associated to Rel(q ∗ ), and show they are isomorphic, that is, L ∼= O(G). On the other hand, we show that the s`-category of relations of the classifying topos of any localic groupoid G, is equivalent to the s`-category of L-comodules with discrete subjacent B-module, where L = O(G). We are forced to work over an arbitrary base topos because, contrary to the neutral case which can be developed completely over Sets, here change of base techniques are unavoidable.
Palabras clave:
Tannaka
,
Galois
,
Sup-Lattice
,
Locale
,
Topos
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Dubuc, Eduardo Julio; Szyld, Martín; Tannaka theory over Sup-Lattices and Descent for Topoi; Mount Allison University; Theory And Applications Of Categories; 31; 31; 2016; 852-906
Compartir