Mostrar el registro sencillo del ítem
dc.contributor.author
Campercholi, Miguel Alejandro Carlos
dc.contributor.author
Vaggione, Diego Jose
dc.date.available
2023-05-29T17:41:57Z
dc.date.issued
2012-10
dc.identifier.citation
Campercholi, Miguel Alejandro Carlos; Vaggione, Diego Jose; Implicit definition of the quaternary discriminator; Birkhauser Verlag Ag; Algebra Universalis; 68; 1-2; 10-2012; 1-16
dc.identifier.issn
0002-5240
dc.identifier.uri
http://hdl.handle.net/11336/198846
dc.description.abstract
Let A be an algebra. A function f: A n → A is implicitly definable by a system of term equations Λ t i(x i,...,x n,z)if f is the only n-ary operation on A making the identities t i(x,f(x))≈ s i(x,f(x)) hold in A. Let K be a class of non-trivial algebras. We prove that the quaternary discriminator is implicitly definable on every member of K (via the same system) iff K is contained in the class of relatively simple members of some relatively semisimple quasivariety with equationally definable relative principal congruences. As an application, we obtain a characterization of the relatively permutable members of such type of quasivarieties. Furthermore, we prove that every algebra in such a quasivariety has a unique relatively permutable extension. © 2012 Springer Basel AG.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EQUATIONALLY DEFINABLE PRINCIPAL CONGRUENCES
dc.subject
IMPLICIT EQUATIONAL DEFINITION
dc.subject
QUATERNARY DISCRIMINATOR
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Implicit definition of the quaternary discriminator
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-05-18T14:40:09Z
dc.identifier.eissn
1420-8911
dc.journal.volume
68
dc.journal.number
1-2
dc.journal.pagination
1-16
dc.journal.pais
Suiza
dc.journal.ciudad
BASEL
dc.description.fil
Fil: Campercholi, Miguel Alejandro Carlos. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Vaggione, Diego Jose. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina
dc.journal.title
Algebra Universalis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00012-012-0189-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00012-012-0189-9
Archivos asociados