Mostrar el registro sencillo del ítem

dc.contributor.author
Campercholi, Miguel Alejandro Carlos  
dc.contributor.author
Vaggione, Diego Jose  
dc.date.available
2023-05-29T17:41:57Z  
dc.date.issued
2012-10  
dc.identifier.citation
Campercholi, Miguel Alejandro Carlos; Vaggione, Diego Jose; Implicit definition of the quaternary discriminator; Birkhauser Verlag Ag; Algebra Universalis; 68; 1-2; 10-2012; 1-16  
dc.identifier.issn
0002-5240  
dc.identifier.uri
http://hdl.handle.net/11336/198846  
dc.description.abstract
Let A be an algebra. A function f: A n → A is implicitly definable by a system of term equations Λ t i(x i,...,x n,z)if f is the only n-ary operation on A making the identities t i(x,f(x))≈ s i(x,f(x)) hold in A. Let K be a class of non-trivial algebras. We prove that the quaternary discriminator is implicitly definable on every member of K (via the same system) iff K is contained in the class of relatively simple members of some relatively semisimple quasivariety with equationally definable relative principal congruences. As an application, we obtain a characterization of the relatively permutable members of such type of quasivarieties. Furthermore, we prove that every algebra in such a quasivariety has a unique relatively permutable extension. © 2012 Springer Basel AG.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EQUATIONALLY DEFINABLE PRINCIPAL CONGRUENCES  
dc.subject
IMPLICIT EQUATIONAL DEFINITION  
dc.subject
QUATERNARY DISCRIMINATOR  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Implicit definition of the quaternary discriminator  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-05-18T14:40:09Z  
dc.identifier.eissn
1420-8911  
dc.journal.volume
68  
dc.journal.number
1-2  
dc.journal.pagination
1-16  
dc.journal.pais
Suiza  
dc.journal.ciudad
BASEL  
dc.description.fil
Fil: Campercholi, Miguel Alejandro Carlos. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Vaggione, Diego Jose. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática; Argentina  
dc.journal.title
Algebra Universalis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00012-012-0189-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00012-012-0189-9