Mostrar el registro sencillo del ítem

dc.contributor.author
Serralunga, Fernán José  
dc.contributor.author
Mussati, Miguel Ceferino  
dc.contributor.author
Aguirre, Pio Antonio  
dc.date.available
2015-09-10T14:21:15Z  
dc.date.issued
2013-11  
dc.identifier.citation
Serralunga, Fernán José; Mussati, Miguel Ceferino; Aguirre, Pio Antonio; Model Adaptation for Real-Time Optimization in Energy Systems; American Chemical Society; Industrial & Engineering Chemical Research; 52; 47; 11-2013; 16795-16810  
dc.identifier.issn
0888-5885  
dc.identifier.uri
http://hdl.handle.net/11336/1987  
dc.description.abstract
Real-time optimization (RTO) is widely used in industry to operate processes close to their maximum performance. The models used for RTO need to be adapted using real-time data to ensure feasibility of the model optimal inputs and convergence to the real plant optimal point. Heat and power systems are suitable for being optimized in real-time because of their fast dynamics and the benefits achievable by reacting to changes in power prices and steam demand. This work proposes a modifier adaptation strategy that exploits the structure of certain problems to make the adaptation faster and more reliable, which is proven to be particularly useful for heat and power systems. The adaptation is performed in the equations that predict efficiencies or performance of unit operations. By identifying the variables that modify each performance factor, the number of data sets needed for gradient correction is reduced. This makes the proposed strategy suitable for real-time optimization of processes with a large number of inputs. Two alternatives are proposed to implement the approach: gradient calculation by finite differences and quadratic regression using current and past data. The features and behavior of this approach are shown through two case studies: (i) a simple model with three processes, and (ii) a heat and power system of a sugar and ethanol plant. A comparison with other existent approaches shows a better performance in terms of operating cost and sensitivity to noise.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Real Time Optimization  
dc.subject
Model Adaptation  
dc.subject
Energy Systems  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Model Adaptation for Real-Time Optimization in Energy Systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.identifier.eissn
http://dx.doi.org/DOI:10.1021/ie303621j  
dc.journal.volume
52  
dc.journal.number
47  
dc.journal.pagination
16795-16810  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Serralunga, Fernán José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina;  
dc.description.fil
Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina;  
dc.description.fil
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina;  
dc.journal.title
Industrial & Engineering Chemical Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie303621j