Mostrar el registro sencillo del ítem
dc.contributor.author
Serralunga, Fernán José
dc.contributor.author
Mussati, Miguel Ceferino
dc.contributor.author
Aguirre, Pio Antonio
dc.date.available
2015-09-10T14:21:15Z
dc.date.issued
2013-11
dc.identifier.citation
Serralunga, Fernán José; Mussati, Miguel Ceferino; Aguirre, Pio Antonio; Model Adaptation for Real-Time Optimization in Energy Systems; American Chemical Society; Industrial & Engineering Chemical Research; 52; 47; 11-2013; 16795-16810
dc.identifier.issn
0888-5885
dc.identifier.uri
http://hdl.handle.net/11336/1987
dc.description.abstract
Real-time optimization (RTO) is widely used in industry to operate processes close to their maximum performance. The models used for RTO need to be adapted using real-time data to ensure feasibility of the model optimal inputs and convergence to the real plant optimal point. Heat and power systems are suitable for being optimized in real-time because of their fast dynamics and the benefits achievable by reacting to changes in power prices and steam demand. This work proposes a modifier adaptation strategy that exploits the structure of certain problems to make the adaptation faster and more reliable, which is proven to be particularly useful for heat and power systems. The adaptation is performed in the equations that predict efficiencies or performance of unit operations. By identifying the variables that modify each performance factor, the number of data sets needed for gradient correction is reduced. This makes the proposed strategy suitable for real-time optimization of processes with a large number of inputs. Two alternatives are proposed to implement the approach: gradient calculation by finite differences and quadratic regression using current and past data. The features and behavior of this approach are shown through two case studies: (i) a simple model with three processes, and (ii) a heat and power system of a sugar and ethanol plant. A comparison with other existent approaches shows a better performance in terms of operating cost and sensitivity to noise.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Real Time Optimization
dc.subject
Model Adaptation
dc.subject
Energy Systems
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Model Adaptation for Real-Time Optimization in Energy Systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-03-30 10:35:44.97925-03
dc.identifier.eissn
http://dx.doi.org/DOI:10.1021/ie303621j
dc.journal.volume
52
dc.journal.number
47
dc.journal.pagination
16795-16810
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington
dc.description.fil
Fil: Serralunga, Fernán José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina;
dc.description.fil
Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina;
dc.description.fil
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina;
dc.journal.title
Industrial & Engineering Chemical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie303621j
Archivos asociados