Mostrar el registro sencillo del ítem

dc.contributor.author
Rodriguez, Diego Emilio  
dc.contributor.author
Bab, Marisa Alejandra  
dc.contributor.author
Albano, Ezequiel Vicente  
dc.date.available
2023-05-24T10:28:40Z  
dc.date.issued
2011-01  
dc.identifier.citation
Rodriguez, Diego Emilio; Bab, Marisa Alejandra; Albano, Ezequiel Vicente; Effective multidimensional crossover behavior in a one-dimensional voter model with long-range probabilistic interactions; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 83; 1; 1-2011; 1-9  
dc.identifier.issn
1550-2376  
dc.identifier.uri
http://hdl.handle.net/11336/198529  
dc.description.abstract
A variant of the standard voter model, where a randomly selected site of a one-dimensional lattice (d=1) adopts the state of another site placed at a distance r from the previous one, is proposed and studied by means of numerical simulations that are rationalized with the aid of dynamical and finite-size scaling arguments. The distance between the two sites is also selected randomly with a probability given by P(r)∝r-(d+σ), where σ is a control parameter. In this way one can study how the introduction of these long-range interactions influences the dynamic behavior of the standard voter model with nearest-neighbor interactions. It is found that the dynamics strongly depends on the range of the interactions, which is parameterized by σ, leading to an interesting effective multidimensional crossover behavior, as follows. (a) For σ<1 ordering is no longer observed and the average interface density [ρ(t)] assumes a steady state in the thermodynamic limit. Instead, for finite-size systems an exponential decay with a characteristic time (τ) that increases with the size is observed. This behavior resembles the scenario corresponding to the short-range voter model for d>2, as well as the case of both scale-free and small-world networks. (b) For σ>1, an ordering dynamics is observed, such that ρ(t)∝t-α, where the exponent α increases with σ until it reaches the value α=1/2 for σ⩾5, which corresponds to the behavior of the standard voter model with short-range interactions in d=1. (c) Finally, for σ≈1 we show evidence of a critical-type behavior as in the case of the critical dimension (dc=2) of the standard voter model.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Voter  
dc.subject
Criticality  
dc.subject
Multidimensional  
dc.subject
Simulation  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Effective multidimensional crossover behavior in a one-dimensional voter model with long-range probabilistic interactions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-04-04T12:08:22Z  
dc.identifier.eissn
1539-3755  
dc.journal.volume
83  
dc.journal.number
1  
dc.journal.pagination
1-9  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Rodriguez, Diego Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Bab, Marisa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.journal.title
Physical Review E: Statistical, Nonlinear and Soft Matter Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/pdf/10.1103/PhysRevE.83.011110  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.83.011110