Mostrar el registro sencillo del ítem

dc.contributor.author
Porter, Ryan  
dc.contributor.author
Gilbert, Hersh  
dc.contributor.author
Zandt, George  
dc.contributor.author
Beck, Susan  
dc.contributor.author
Warren, Linda  
dc.contributor.author
Calkins, Josh  
dc.contributor.author
Alvarado, Patricia Monica  
dc.contributor.author
Anderson, Megan  
dc.date.available
2023-05-19T17:36:29Z  
dc.date.issued
2012-11  
dc.identifier.citation
Porter, Ryan; Gilbert, Hersh; Zandt, George; Beck, Susan; Warren, Linda; et al.; Shear wave velocities in the Pampean flat-slab region from Rayleigh wave tomography: Implications for slab and upper mantle hydration; American Geophysical Union; Journal of Geophysical Research: Solid Earth; 117; 11; 11-2012; 301-322  
dc.identifier.issn
0148-0227  
dc.identifier.uri
http://hdl.handle.net/11336/198209  
dc.description.abstract
The Pampean flat-slab region, located in central Argentina and Chile between 29° and 34° S, is considered a modern analogue for Laramide flat-slab subduction within western North America. Regionally, flat-slab subduction is characterized by the Nazca slab descending to ~100 km depth, flattening out for ~300 km laterally before resuming a more ?normal? angle of subduction. The onset of flat-slab subduction is associated with the inboard migration of deformation from the high Andes into the Precordillera and Sierras Pampeanas, as well as the eastward migration and eventual cessation of arc related volcanism. Flat-slab subduction correlates spatially with the track of the Juan Fernandez Ridge, suggesting a relationship between the two. We use ambient-noise tomography and ballistic surface waves to calculate a regional 3D shear velocity model that encompasses both flat-slab subduction and normal-angle subduction located immediately to the south. Within the crust we find that shear wave velocity variations are largely related to changes in lithology, with basins and bedrock exposures clearly defined as low- and high-velocity regions, respectively. In the south, where normal-angle subduction is occurring, a low-velocity feature is observed in the upper mantle beneath the active arc, consistent with the presence of partial melt. We argue that subduction related hydration plays a significant role in controlling shear wave velocities within the upper mantle. In the normal-angle subduction zone in the southern part of the study area, the slab is visible as a high-velocity body with a low-velocity mantle wedge above it, extending eastward from the active arc. These low velocities are likely due to hot asthenosphere emplaced as corner flow.Where flat-slab subduction is occurring, slab velocities increase to the east while velocities in the overlying lithosphere decrease, consistent with the slab dewatering and hydrating the overlying mantle. As the flat slab steepens and assumes a normal angle of subduction, we observe a dipping low velocity layer above it, consistent with cooled asthenosphere or hydrated lithospheric mantle sandwiched between the subducting slab and high velocity lithosphere of the Rio de la Plata craton. Shear velocities suggest that the slab is more hydrated in the flat-slab region than to the south and that the Rio de la Plata cratonic lithosphere may be inhibiting corner flow in this area. The hydration of the downgoing slab may be contributing to the excess buoyancy of the down going oceanic lithosphere.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Geophysical Union  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
TOMOGRAPHY  
dc.subject
AMBIENTAL NOISE  
dc.subject
FLAT SLAB  
dc.subject
RAYLEIGH WAVE  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Shear wave velocities in the Pampean flat-slab region from Rayleigh wave tomography: Implications for slab and upper mantle hydration  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-05-19T10:54:51Z  
dc.identifier.eissn
2169-9356  
dc.journal.volume
117  
dc.journal.number
11  
dc.journal.pagination
301-322  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Porter, Ryan. University of Arizona; Estados Unidos  
dc.description.fil
Fil: Gilbert, Hersh. Purdue University; Estados Unidos  
dc.description.fil
Fil: Zandt, George. University of Arizona; Estados Unidos  
dc.description.fil
Fil: Beck, Susan. University of Arizona; Estados Unidos  
dc.description.fil
Fil: Warren, Linda. Saint Louis University; Estados Unidos  
dc.description.fil
Fil: Calkins, Josh. Columbia University; Estados Unidos  
dc.description.fil
Fil: Alvarado, Patricia Monica. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Anderson, Megan. Colorado College; Estados Unidos  
dc.journal.title
Journal of Geophysical Research: Solid Earth  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2012JB009350  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1029/2012JB009350