Artículo
Aggregating local image descriptors into compact codes
Fecha de publicación:
09/2012
Editorial:
IEEE Computer Society
Revista:
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN:
0162-8828
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core.
Palabras clave:
IMAGE SEARCH
,
IMAGE RETRIEVAL
,
INDEXING
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Jegou, H.; Perronnin, F.; Douze, M.; Sanchez, Jorge Adrian; Perez, P.; et al.; Aggregating local image descriptors into compact codes; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 34; 9; 9-2012; 1704-1716
Compartir
Altmétricas