Mostrar el registro sencillo del ítem

dc.contributor.author
Aquistapace, F.  
dc.contributor.author
Vazquez, N.  
dc.contributor.author
Chiarpotti, M.  
dc.contributor.author
Deluigi, Orlando Raul  
dc.contributor.author
Ruestes, Carlos Javier  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.date.available
2023-05-17T18:01:03Z  
dc.date.issued
2022-08  
dc.identifier.citation
Aquistapace, F.; Vazquez, N.; Chiarpotti, M.; Deluigi, Orlando Raul; Ruestes, Carlos Javier; et al.; Atomistic Simulations of Ductile Failure in a b.c.c. High-Entropy Alloy; Springer; High Entropy Alloys & Materials; 8-2022; 1-12  
dc.identifier.issn
2731-5827  
dc.identifier.uri
http://hdl.handle.net/11336/197838  
dc.description.abstract
Ductile failure is studied in a bcc HfNbTaZr High-Entropy Alloy (HEA) with a pre-existing void. Using molecular dynamics simulations of uniaxial tensile tests, we explore the effect of void radius on the elastic modulus and yield stress. The elastic modulus scales with porosity as in closed-cell foams. The critical stress for dislocation nucleation as a function of the void radius is very well described by a model designed after pure bcc metals, taking into account a larger core radius for the HEA. Twinning takes place as a complementary deformation mechanism, and some detwinning occurs at large strain. No solid–solid phase transitions are identified. The concurrent effects of element size mismatch and plasticity lead to significant lattice disorder. By comparing our HEA results to pure tantalum simulations, we show that the critical stress for dislocation nucleation and the resulting dislocation densities are much lower than for pure Ta, as expected from lower energy barriers due to chemical complexity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HIGH ENTROPY ALLOYS  
dc.subject
VOID GROWTH  
dc.subject
PLASTICITY  
dc.subject
DISLOCATIONS  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Atomistic Simulations of Ductile Failure in a b.c.c. High-Entropy Alloy  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-05-17T15:21:25Z  
dc.journal.pagination
1-12  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Aquistapace, F.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Vazquez, N.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Chiarpotti, M.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Deluigi, Orlando Raul. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad Mayor.; Chile. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.journal.title
High Entropy Alloys & Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s44210-022-00004-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s44210-022-00004-6