Mostrar el registro sencillo del ítem
dc.contributor.author
Aquistapace, F.
dc.contributor.author
Vazquez, N.
dc.contributor.author
Chiarpotti, M.
dc.contributor.author
Deluigi, Orlando Raul
dc.contributor.author
Ruestes, Carlos Javier
dc.contributor.author
Bringa, Eduardo Marcial
dc.date.available
2023-05-17T18:01:03Z
dc.date.issued
2022-08
dc.identifier.citation
Aquistapace, F.; Vazquez, N.; Chiarpotti, M.; Deluigi, Orlando Raul; Ruestes, Carlos Javier; et al.; Atomistic Simulations of Ductile Failure in a b.c.c. High-Entropy Alloy; Springer; High Entropy Alloys & Materials; 8-2022; 1-12
dc.identifier.issn
2731-5827
dc.identifier.uri
http://hdl.handle.net/11336/197838
dc.description.abstract
Ductile failure is studied in a bcc HfNbTaZr High-Entropy Alloy (HEA) with a pre-existing void. Using molecular dynamics simulations of uniaxial tensile tests, we explore the effect of void radius on the elastic modulus and yield stress. The elastic modulus scales with porosity as in closed-cell foams. The critical stress for dislocation nucleation as a function of the void radius is very well described by a model designed after pure bcc metals, taking into account a larger core radius for the HEA. Twinning takes place as a complementary deformation mechanism, and some detwinning occurs at large strain. No solid–solid phase transitions are identified. The concurrent effects of element size mismatch and plasticity lead to significant lattice disorder. By comparing our HEA results to pure tantalum simulations, we show that the critical stress for dislocation nucleation and the resulting dislocation densities are much lower than for pure Ta, as expected from lower energy barriers due to chemical complexity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
HIGH ENTROPY ALLOYS
dc.subject
VOID GROWTH
dc.subject
PLASTICITY
dc.subject
DISLOCATIONS
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Atomistic Simulations of Ductile Failure in a b.c.c. High-Entropy Alloy
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-05-17T15:21:25Z
dc.journal.pagination
1-12
dc.journal.pais
Suiza
dc.description.fil
Fil: Aquistapace, F.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Vazquez, N.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Chiarpotti, M.. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Deluigi, Orlando Raul. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.description.fil
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad Mayor.; Chile. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.journal.title
High Entropy Alloys & Materials
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s44210-022-00004-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s44210-022-00004-6
Archivos asociados