Mostrar el registro sencillo del ítem

dc.contributor.author
Foglia, Nicolás Oscar  
dc.contributor.author
Maganas, Dimitrios  
dc.contributor.author
Neese, Frank  
dc.date.available
2023-05-16T13:08:07Z  
dc.date.issued
2022-08  
dc.identifier.citation
Foglia, Nicolás Oscar; Maganas, Dimitrios; Neese, Frank; Going beyond the electric-dipole approximation in the calculation of absorption and (magnetic) circular dichroism spectra including scalar relativistic and spin-orbit coupling effects; American Institute of Physics; Journal of Chemical Physics; 157; 8; 8-2022; 1-17  
dc.identifier.issn
0021-9606  
dc.identifier.uri
http://hdl.handle.net/11336/197658  
dc.description.abstract
In this work, a time-dependent density functional theory (TD-DFT) scheme for computing optical spectroscopic properties in the framework of linearly and circularly polarized light is presented. The scheme is based on a previously formulated theory for predicting optical absorption and magnetic circular dichroism (MCD) spectra. The scheme operates in the framework of the full semi-classical field-matter interaction operator, thus generating a powerful and general computational scheme capable of computing the absorption, circular dichroism (CD), and MCD spectra. In addition, our implementation includes the treatment of relativistic effects in the framework of quasidegenerate perturbation theory, which accounts for scalar relativistic effects (in the self-consistent field step) and spin-orbit coupling (in the TD-DFT step), as well as external magnetic field perturbations. Hence, this formalism is also able to probe spin-forbidden transitions. The random orientations of molecules are taken into account by a semi-numerical approach involving a Lebedev numerical quadrature alongside analytical integration. It is demonstrated that the numerical quadrature requires as few as 14 points for satisfactory converged results, thus leading to a highly efficient scheme, while the calculation of the exact transition moments creates no computational bottlenecks. It is demonstrated that at zero magnetic field, the CD spectrum is recovered, while the sum of left and right circularly polarized light contributions provides the linear absorption spectrum. The virtues of this efficient and general protocol are demonstrated on a selected set of organic molecules where the various contributions to the spectral intensities have been analyzed in detail.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
TD-DFT  
dc.subject
MCD  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Going beyond the electric-dipole approximation in the calculation of absorption and (magnetic) circular dichroism spectra including scalar relativistic and spin-orbit coupling effects  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-05-16T11:24:33Z  
dc.journal.volume
157  
dc.journal.number
8  
dc.journal.pagination
1-17  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Foglia, Nicolás Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Maganas, Dimitrios. Max-Planck-Institut für Kohlenforschung; Alemania  
dc.description.fil
Fil: Neese, Frank. Max-Planck-Institut für Kohlenforschung; Alemania  
dc.journal.title
Journal of Chemical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0094709