Mostrar el registro sencillo del ítem

dc.contributor.author
Alviso, Dario  
dc.contributor.author
Sciamarella, Denisse  
dc.contributor.author
Gronskis, Alejandro  
dc.contributor.author
Artana, Guillermo Osvaldo  
dc.date.available
2023-05-16T11:53:20Z  
dc.date.issued
2022-09  
dc.identifier.citation
Alviso, Dario; Sciamarella, Denisse; Gronskis, Alejandro; Artana, Guillermo Osvaldo; Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports; IOP Publishing; Bioinspiration & Biomimetics; 17; 9-2022; 1-11  
dc.identifier.issn
1748-3182  
dc.identifier.uri
http://hdl.handle.net/11336/197626  
dc.description.abstract
This work considers the two-dimensional flow field of an incompressible viscous fluid in a parallel-sided channel. In our study, one of the walls is fixed whereas the other one is elastically mounted, and sustained oscillations are induced by the fluid motion. The flow that forces the wall movement is produced as a consequence that one of the ends of the channel is pressurized, whereas the opposite end is at atmospheric pressure. The study aims at reducing the complexity of models for several physiological systems in which fluid-structure interaction produces large deformation of the wall. We report the experimental results of the observed self-sustained oscillations. These oscillations occur at frequencies close to the natural frequency of the system. The vertical motion is accompanied by a slight trend to rotate the moving mass at intervals when the gap height is quite narrow. We propose a simplified analytical model to explore the conditions under which this motion is possible. The analytical approach considers asymptotic solutions of the Navier-Stokes equation with a perturbation technique. The comparison between the experimental pressure measured at the midlength of the channel and the analytical result issued with a model neglecting viscous effects shows a very good agreement. Also, the rotating trend of the moving wall can be explained in terms of the quadratic dependence of the pressure with the streamwise coordinate that is predicted by this simplified model.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FLOW INDUCED SELF-OSCILLATION  
dc.subject
FLUID-STRUCTURE INTERACTION  
dc.subject
STRAIGHT CHANNEL  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-05-16T11:25:06Z  
dc.journal.volume
17  
dc.journal.pagination
1-11  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Alviso, Dario. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Gronskis, Alejandro. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina  
dc.description.fil
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Bioinspiration & Biomimetics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1748-3190/ac8c0f