Mostrar el registro sencillo del ítem
dc.contributor.author
Alviso, Dario
dc.contributor.author
Sciamarella, Denisse
dc.contributor.author
Gronskis, Alejandro
dc.contributor.author
Artana, Guillermo Osvaldo
dc.date.available
2023-05-16T11:53:20Z
dc.date.issued
2022-09
dc.identifier.citation
Alviso, Dario; Sciamarella, Denisse; Gronskis, Alejandro; Artana, Guillermo Osvaldo; Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports; IOP Publishing; Bioinspiration & Biomimetics; 17; 9-2022; 1-11
dc.identifier.issn
1748-3182
dc.identifier.uri
http://hdl.handle.net/11336/197626
dc.description.abstract
This work considers the two-dimensional flow field of an incompressible viscous fluid in a parallel-sided channel. In our study, one of the walls is fixed whereas the other one is elastically mounted, and sustained oscillations are induced by the fluid motion. The flow that forces the wall movement is produced as a consequence that one of the ends of the channel is pressurized, whereas the opposite end is at atmospheric pressure. The study aims at reducing the complexity of models for several physiological systems in which fluid-structure interaction produces large deformation of the wall. We report the experimental results of the observed self-sustained oscillations. These oscillations occur at frequencies close to the natural frequency of the system. The vertical motion is accompanied by a slight trend to rotate the moving mass at intervals when the gap height is quite narrow. We propose a simplified analytical model to explore the conditions under which this motion is possible. The analytical approach considers asymptotic solutions of the Navier-Stokes equation with a perturbation technique. The comparison between the experimental pressure measured at the midlength of the channel and the analytical result issued with a model neglecting viscous effects shows a very good agreement. Also, the rotating trend of the moving wall can be explained in terms of the quadratic dependence of the pressure with the streamwise coordinate that is predicted by this simplified model.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FLOW INDUCED SELF-OSCILLATION
dc.subject
FLUID-STRUCTURE INTERACTION
dc.subject
STRAIGHT CHANNEL
dc.subject.classification
Mecánica Aplicada
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Flow-induced self-sustained oscillations in a straight channel with rigid walls and elastic supports
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-05-16T11:25:06Z
dc.journal.volume
17
dc.journal.pagination
1-11
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Alviso, Dario. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Sciamarella, Denisse. Centre National de la Recherche Scientifique; Francia
dc.description.fil
Fil: Gronskis, Alejandro. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina
dc.description.fil
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Bioinspiration & Biomimetics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1748-3190/ac8c0f
Archivos asociados