Mostrar el registro sencillo del ítem

dc.contributor.author
Paruch, P.  
dc.contributor.author
Kolton, Alejandro Benedykt  
dc.contributor.author
Hong, X.  
dc.contributor.author
Ahn, C. H.  
dc.contributor.author
Giamarchi, T.  
dc.date.available
2023-05-11T13:20:54Z  
dc.date.issued
2012-06  
dc.identifier.citation
Paruch, P.; Kolton, Alejandro Benedykt; Hong, X.; Ahn, C. H.; Giamarchi, T.; Thermal quench effects on ferroelectric domain walls; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 85; 21; 6-2012; 1-7  
dc.identifier.issn
1098-0121  
dc.identifier.uri
http://hdl.handle.net/11336/197168  
dc.description.abstract
Using piezoresponse force microscopy on epitaxial ferroelectric thin films, we have measured the evolution of domain wall roughening as a result of heat-quench cycles up to 735 -C, with the effective roughness exponent ζ changing from 0.25 to 0.5. We discuss two possible mechanisms for the observed ζ increase: a quench from a thermal one-dimensional configuration and from a locally equilibrated pinned configuration with a crossover from a two- to one-dimensional regime. We find that the postquench spatial structure of the metastable states, qualitatively consistent with the existence of a growing dynamical length scale whose ultraslow evolution is primarily controlled by the defect configuration and heating process parameters, makes the second scenario more plausible. This interpretation suggests that pinning is relevant in a wide range of temperatures and, in particular, that purely thermal domain wall configurations might not be observable in this glassy system. We also demonstrate the crucial effects of oxygen vacancies in stabilizing domain structures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ferroelectrics  
dc.subject
domain walls  
dc.subject
Disorder  
dc.subject
out of equilibrium  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Thermal quench effects on ferroelectric domain walls  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-04-27T11:52:09Z  
dc.journal.volume
85  
dc.journal.number
21  
dc.journal.pagination
1-7  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Paruch, P.. Universidad de Ginebra. Facultad de Ciencias. Sección de Física; Suiza  
dc.description.fil
Fil: Kolton, Alejandro Benedykt. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Hong, X.. University of Yale; Estados Unidos  
dc.description.fil
Fil: Ahn, C. H.. University of Yale; Estados Unidos  
dc.description.fil
Fil: Giamarchi, T.. Universidad de Ginebra. Facultad de Ciencias; Suiza  
dc.journal.title
Physical Review B: Condensed Matter and Materials Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://prb.aps.org/abstract/PRB/v85/i21/e214115  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevB.85.214115