Mostrar el registro sencillo del ítem
dc.contributor.author
Maisonnave, Mariano

dc.contributor.author
Delbianco, Fernando Andrés

dc.contributor.author
Tohmé, Fernando Abel

dc.contributor.author
Milios, Evangelos
dc.contributor.author
Maguitman, Ana Gabriela

dc.date.available
2023-05-11T11:54:05Z
dc.date.issued
2022-08-03
dc.identifier.citation
Maisonnave, Mariano; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Milios, Evangelos; Maguitman, Ana Gabriela; Causal graph extraction from news: a comparative study of time-series causality learning techniques; PeerJ; PeerJ Computer Science; 8; 3-8-2022; 2-28
dc.identifier.uri
http://hdl.handle.net/11336/197131
dc.description.abstract
Causal graph extraction from news has the potential to aid in the understanding of complex scenarios. In particular, it can help explain and predict events, as well as conjecture about possible cause-effect connections. However, limited work has addressed the problem of large-scale extraction of causal graphs from news articles. This article presents a novel framework for extracting causal graphs from digital text media. The framework relies on topic-relevant variables representing terms and ongoing events that are selected from a domain under analysis by applying specially developed information retrieval and natural language processing methods. Events are represented as event-phrase embeddings, which make it possible to group similar events into semantically cohesive clusters. A time series of the selected variables is given as input to a causal structure learning techniques to learn a causal graph associated with the topic that is being examined. The complete framework is applied to the New York Times dataset, which covers news for a period of 246 months (roughly 20 years), and is illustrated through a case study. An initial evaluation based on synthetic data is carried out to gain insight into the most effective time-series causality learning techniques. This evaluation comprises a systematic analysis of nine state-of-the-art causal structure learning techniques and two novel ensemble methods derived from the most effective techniques. Subsequently, the complete framework based on the most promising causal structure learning technique is evaluated with domain experts in a real-world scenario through the use of the presented case study. The proposed analysis offers valuable insights into the problems of identifying topic-relevant variables from large volumes of news and learning causal graphs from time series
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
PeerJ
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
CAUSAL GRAPH EXTRACTION
dc.subject
DIGITAL TEXT MEDIA
dc.subject
INFORMATION EXTRACTION FROM NEWS
dc.subject
TIME-SERIES CAUSALITY LEARNING
dc.subject
VARIABLE EXTRACTION
dc.subject.classification
Otras Ciencias de la Computación e Información

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Causal graph extraction from news: a comparative study of time-series causality learning techniques
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-05-02T23:03:11Z
dc.identifier.eissn
2376-5992
dc.journal.volume
8
dc.journal.pagination
2-28
dc.journal.pais
Reino Unido
dc.journal.ciudad
San Diego
dc.description.fil
Fil: Maisonnave, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Dalhousie University Halifax; Canadá
dc.description.fil
Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Milios, Evangelos. Dalhousie University Halifax; Canadá
dc.description.fil
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.journal.title
PeerJ Computer Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7717/PEERJ-CS.1066
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/cs-1066/
Archivos asociados