Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Towards an argument-based music recommender system

Briguez, Cristian EmanuelIcon ; Budan, Maximiliano Celmo DavidIcon ; Deagustini, Cristhian Ariel DavidIcon ; Maguitman, Ana GabrielaIcon ; Capobianco, MarcelaIcon ; Simari, Guillermo RicardoIcon
Fecha de publicación: 09/2012
Editorial: IOS Press
Revista: Frontiers in Artificial Intelligence and Applications
ISSN: 0922-6389
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

The significance of recommender systems has steadily grown in recent years as they help users to access relevant items from the vast universe of possibilities available these days. However, most of the research in recommenders is based purely on quantitative aspects, i.e., measures of similarity between items or users. In this paper we introduce a novel hybrid approach to refine recommendations achieved by quantitative methods with a qualitative approach based on argumentation, where suggestions are given after considering several arguments in favor or against the recommendations. In order to accomplish this, we use Defeasible Logic Programming (DeLP) as the underlying formalism for obtaining recommendations. This approach has a number of advantages over other existing recommendation techniques.In particular, recommendations can be refined at any time by adding new polished rules, and explanations may be provided supporting each  recommendation in a way that can be easily understood by the user, by means of the computed arguments.
Palabras clave: DEFEASIBLE ARGUMENTATION , QUALITATIVE RECOMMENDATIONS , RECOMMENDER SYSTEMS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 185.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/197052
URL: https://ebooks.iospress.nl/volumearticle/7423
DOI: http://dx.doi.org/10.3233/978-1-61499-111-3-83
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Briguez, Cristian Emanuel; Budan, Maximiliano Celmo David; Deagustini, Cristhian Ariel David; Maguitman, Ana Gabriela; Capobianco, Marcela; et al.; Towards an argument-based music recommender system; IOS Press; Frontiers in Artificial Intelligence and Applications; 245; 1; 9-2012; 83-90
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES