Artículo
Lower bounds for norms of products of polynomials via Bombieri inequality
Fecha de publicación:
08/2012
Editorial:
American Mathematical Society
Revista:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we give a different interpretation of Bombieri´s norm. This new point of view allows us to work on a problem posed by Beauzamy about the behavior of the sequence $S_n(P)=sup_{Q_n}, [PQ_n]_2$, where $P$ is a fixed $m-$homogeneous polynomial and $Q_n$ runs over the unit ball of the Hilbert space of $n-$homogeneous polynomials. We also study the factor problem for homogeneous polynomials defined on $zC^N$ and we obtain sharp inequalities whenever the number of factors is no greater than $N$. In particular, we prove that for the product of homogeneous polynomials on infinite dimensional complex Hilbert spaces our inequality is sharp. Finally, we use these ideas to prove that any set ${z_k}_{k=1}^n$ of unit vectors in a complex Hilbert space for which $sup_{Vert z Vert=1} vert langle z, z_1 angle cdots langle z, z_n angle vert$ is minimum must be an orthonormal system.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Pinasco, Damian; Lower bounds for norms of products of polynomials via Bombieri inequality; American Mathematical Society; Transactions of the American Mathematical Society; 364; 8; 8-2012; 3393-4010
Compartir