Artículo
A finely tuned interplay between calcium binding, ionic strength and pH modulates conformational and oligomerization equilibria in the Respiratory Syncytial Virus Matrix (M) protein
Esperante, Sebastian
; Álvarez Paggi, Damián Jorge
; Salgueiro, Mariano
; Desimone, Martín Federico
; de Oliveira, G. A. P.; Aran, Martin
; García Pardo, J.; Aptekmann, Ariel
; Ventura, S.; Alonso, Leonardo Gabriel
; de Prat Gay, Gonzalo
Fecha de publicación:
11/2022
Editorial:
Elsevier Science Inc.
Revista:
Archives of Biochemistry and Biophysics
ISSN:
0003-9861
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
As in most enveloped RNA viruses, the Respiratory Syncytial Virus Matrix (RSV-M) protein plays key roles in viral assembly and uncoating. It also plays non-structural roles related to transcription modulation through nucleo-cytoplasmic shuttling and nucleic acid binding ability. We dissected the structural and conformational changes underlying the switch between multiple functionalities, identifying Ca2+ binding as a key factor. To this end, we tackled the analysis of M's conformational stability and equilibria. While in silico calculations predict two potential calcium binding sites per protomer, purified RSV-M dimer contains only one strongly bound calcium ion per protomer. Incubation of RSV-M in the presence of excess Ca2+ leads to an increase in the thermal stability, confirming additional Ca2+ binding sites. Moreover, mild denaturant concentrations trigger the formation of higher order oligomers which are otherwise prevented under Ca2+ saturation conditions, in line with the stabilizing effect of the additional low affinity binding site. On the other hand, Ca2+ removal by chelation at pH 7.0 causes a substantial decrease in the thermal stability leading to the formation of amorphous, spherical-like aggregates, as assessed by TEM. Even though the Ca2+ content modulates RSV-M oligomerization propensity, it does affect its weak RNA binding ability. RSV-M undergoes a substantial conformational change at pHs 4.0 to 5.0 that results in the exposure of hydrophobic surfaces, an increase beta sheet content but burial of tryptophan residues. While low ionic strength promotes dimer dissociation at pH 4.0, physiological concentrations of NaCl lead to the formation of soluble oligomers smaller than 400 kDa at pH 4.0 or insoluble aggregates with tubular morphology at pH 5.0, supporting a fine tuning by pH. Furthermore, the dissociation constants estimated for the low- and high affinity calcium binding sites are 13 μM and 58 nM, respectively, suggesting an intracellular calcium sensing mechanism of RSV-M upon infection. We uncover a finely tuned interplay between calcium binding, ionic strength, and pH changes compatible with the different cellular compartments where M plays key roles, revealing diverse conformational equilibria, oligomerization, and high order structures, required to stabilize the virion particle by a layer of molecules positioned between the membrane and the nucleocapsid.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Esperante, Sebastian; Álvarez Paggi, Damián Jorge; Salgueiro, Mariano; Desimone, Martín Federico; de Oliveira, G. A. P.; et al.; A finely tuned interplay between calcium binding, ionic strength and pH modulates conformational and oligomerization equilibria in the Respiratory Syncytial Virus Matrix (M) protein; Elsevier Science Inc.; Archives of Biochemistry and Biophysics; 731; 11-2022; 1-14
Compartir
Altmétricas