Mostrar el registro sencillo del ítem

dc.contributor.author
Hernandez, J. A.  
dc.contributor.author
Oliver, J.  
dc.contributor.author
Huespe, Alfredo Edmundo  
dc.contributor.author
Caicedo, M. A.  
dc.contributor.author
Cante, J. C.  
dc.date.available
2017-07-05T20:14:43Z  
dc.date.issued
2014-03  
dc.identifier.citation
Hernandez, J. A.; Oliver, J.; Huespe, Alfredo Edmundo; Caicedo, M. A.; Cante, J. C.; High-performance model reduction techniques in computational multiscale homogenization; Elsevier; Computer Methods In Applied Mechanics And Engineering; 276; 3-2014; 149-189  
dc.identifier.issn
0045-7825  
dc.identifier.uri
http://hdl.handle.net/11336/19675  
dc.description.abstract
A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computational homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version — that accounts for the elastic/inelastic character of the solution — of the Proper Orthogonal Decomposition (POD). On the other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in the homogenization of a highly complex porous metal material. Computed results show that computational complexity is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over three orders of magnitude — as compared with finite element analysis — whereas the maximum error in stresses is less than 10%.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Multiscale  
dc.subject
Homogenization  
dc.subject
Model Reduction  
dc.subject
High-Performance Reduced-Order Model  
dc.subject
Hyperreduction  
dc.subject
Pod  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
High-performance model reduction techniques in computational multiscale homogenization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-03T19:51:37Z  
dc.journal.volume
276  
dc.journal.pagination
149-189  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Hernandez, J. A.. Technical University of Catalonia; España  
dc.description.fil
Fil: Oliver, J.. Technical University of Catalonia; España  
dc.description.fil
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina. Universidad Politecnica de Catalunya; España  
dc.description.fil
Fil: Caicedo, M. A.. Technical University of Catalonia; España  
dc.description.fil
Fil: Cante, J. C.. Technical University of Catalonia; España  
dc.journal.title
Computer Methods In Applied Mechanics And Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cma.2014.03.011  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0045782514000978?via%3Dihub