Mostrar el registro sencillo del ítem
dc.contributor.author
Hernandez, J. A.
dc.contributor.author
Oliver, J.
dc.contributor.author
Huespe, Alfredo Edmundo
dc.contributor.author
Caicedo, M. A.
dc.contributor.author
Cante, J. C.
dc.date.available
2017-07-05T20:14:43Z
dc.date.issued
2014-03
dc.identifier.citation
Hernandez, J. A.; Oliver, J.; Huespe, Alfredo Edmundo; Caicedo, M. A.; Cante, J. C.; High-performance model reduction techniques in computational multiscale homogenization; Elsevier; Computer Methods In Applied Mechanics And Engineering; 276; 3-2014; 149-189
dc.identifier.issn
0045-7825
dc.identifier.uri
http://hdl.handle.net/11336/19675
dc.description.abstract
A novel model-order reduction technique for the solution of the fine-scale equilibrium problem appearing in computational homogenization is presented. The reduced set of empirical shape functions is obtained using a partitioned version — that accounts for the elastic/inelastic character of the solution — of the Proper Orthogonal Decomposition (POD). On the other hand, it is shown that the standard approach of replacing the nonaffine term by an interpolant constructed using only POD modes leads to ill-posed formulations. We demonstrate that this ill-posedness can be avoided by enriching the approximation space with the span of the gradient of the empirical shape functions. Furthermore, interpolation points are chosen guided, not only by accuracy requirements, but also by stability considerations. The approach is assessed in the homogenization of a highly complex porous metal material. Computed results show that computational complexity is independent of the size and geometrical complexity of the Representative Volume Element. The speedup factor is over three orders of magnitude — as compared with finite element analysis — whereas the maximum error in stresses is less than 10%.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Multiscale
dc.subject
Homogenization
dc.subject
Model Reduction
dc.subject
High-Performance Reduced-Order Model
dc.subject
Hyperreduction
dc.subject
Pod
dc.subject.classification
Mecánica Aplicada
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
High-performance model reduction techniques in computational multiscale homogenization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-03T19:51:37Z
dc.journal.volume
276
dc.journal.pagination
149-189
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Hernandez, J. A.. Technical University of Catalonia; España
dc.description.fil
Fil: Oliver, J.. Technical University of Catalonia; España
dc.description.fil
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones En Metodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones En Metodos Computacionales; Argentina. Universidad Politecnica de Catalunya; España
dc.description.fil
Fil: Caicedo, M. A.. Technical University of Catalonia; España
dc.description.fil
Fil: Cante, J. C.. Technical University of Catalonia; España
dc.journal.title
Computer Methods In Applied Mechanics And Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cma.2014.03.011
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0045782514000978?via%3Dihub
Archivos asociados