Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Prediction and understanding of employee retention: a machine learning application

Musso, Mariel FernandaIcon ; Cascallar, Eduardo
Colaboradores: París, Georgina; Quesada Pallarés, Carla; Ciraso Calí, Anna; Roig Ester, Helena
Tipo del evento: Congreso
Nombre del evento: Earli SIG14 2020 Conference
Fecha del evento: 07/06/2020
Institución Organizadora: European Association for Research of Learning and Instruction; Universitat Autónoma de Barcelona;
Título del Libro: Professional learning & development: from innovative research to innovative interventions. Book of abstracts of the EARLI SIG14 2020 Conference
Editorial: European Association for Research of Learning and Instruction; Universitat Autónoma de Barcelona
Idioma: Inglés
Clasificación temática:
Psicología

Resumen

The main objectives of this study were to develop accurate predictive models of “employee retention” and to understand the contribution of specific personal and organizational factors predicting this phenomenon. The participants were 993 employees (54.2% female) from different organizations in the private and public sector, age mean: 32 years old (SD= 10.33); seniority: 5.83 years (SD= 6.7). A socio-demographic questionnaire to collect personal background factors and an employee retention questionnaire were applied. Multilayer perceptron artificial neural networks (ANN) with a backpropagation algorithm were developed in order to identify employees with low intention to stay in the current organization (low 33%). ANN achieved a high accuracy in the training testing phase (77%), testing phase (100%), and validation set (100%) for the target group. A more accurate identification of those workers who have a low sense of belonging within the company, would allow a more targeted investment in personnel training.
Palabras clave: Machine learning , Employee retention , Neural networks , Workplace
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 925.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/196618
DOI: http://dx.doi.org/10.6084/m9.figshare.12515342
URL: https://figshare.com/articles/conference_contribution/Book_of_Abstracts_EARLI_SI
Colecciones
Eventos(CIIPME)
Eventos de CENTRO INTER. DE INV. EN PSICOLOGIA MATEMATICA Y EXP. "DR. HORACIO J.A RIMOLDI"
Citación
Prediction and understanding of employee retention: a machine learning application; Earli SIG14 2020 Conference; Barcelona; España; 2020; 69-69
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES