Artículo
Xanthan chain length is modulated by increasing the availability of the polysaccharide copolymerase protein GumC and the outer membrane polysaccharide export protein GumB
Galvan, Estela Maria
; Ielmini, María V.; Patel, Yamini N.; Bianco, Maria Isabel
; Franceschini, Esteban Andres
; Schneider, Jane C.; Ielpi, Luis
Fecha de publicación:
02/2013
Editorial:
Oxford Univ Press Inc
Revista:
Glycobiology
ISSN:
0959-6658
e-ISSN:
1460-2423
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Xanthan is a polysaccharide secreted by Xanthomonas campestris that contains pentameric repeat units. The biosynthesis of xanthan involves an operon composed of 12 genes (gumB to gumM). In this study, we analyzed the proteins encoded by gumB and gumC. Membrane fractionation showed that GumB was mainly associated with the outer membrane, whereas GumC was an inner membrane protein. By in silico analysis and specific globomycin inhibition, GumB was characterized as a lipoprotein. By reporter enzyme assays, GumC was shown to contain two transmembrane segments flanking a large periplasmic domain. We confirmed that gumB and gumC mutant strains uncoupled the synthesis of the lipid-linked repeat unit from the polymerization process. We studied the effects of gumB and gumC gene amplification on the production, composition and viscosity of xanthan. Overexpression of GumB, GumC or GumB and GumC simultaneously did not affect the total amount or the chemical composition of the polymer. GumB overexpression did not affect xanthan viscosity; however, a moderate increase in xanthan viscosity was achieved when GumC protein levels were increased 5-fold. Partial degradation of GumC was observed when only that protein was overexpressed; but co-expression of GumB and GumC diminished GumC degradation and resulted in higher xanthan viscosity than individual GumB or GumC overexpression. Compared with xanthan from the wild-type strain, longer polymer chains from the strain that simultaneously overexpressed GumB and GumC were observed by atomic force microscopy. Our results suggest that GumB-GumC protein levels modulate xanthan chain length, which results in altered polymer viscosity.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICT - MILSTEIN)
Articulos de INST.DE CS. Y TECNOLOGIA "DR. CESAR MILSTEIN"
Articulos de INST.DE CS. Y TECNOLOGIA "DR. CESAR MILSTEIN"
Articulos(IIBBA)
Articulos de INST.DE INVEST.BIOQUIMICAS DE BS.AS(I)
Articulos de INST.DE INVEST.BIOQUIMICAS DE BS.AS(I)
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Galvan, Estela Maria; Ielmini, María V.; Patel, Yamini N.; Bianco, Maria Isabel; Franceschini, Esteban Andres; et al.; Xanthan chain length is modulated by increasing the availability of the polysaccharide copolymerase protein GumC and the outer membrane polysaccharide export protein GumB; Oxford Univ Press Inc; Glycobiology; 23; 2; 2-2013; 259-272
Compartir
Altmétricas