Artículo
Full Laplace spectrum of distance spheres in symmetric spaces of rank one
Fecha de publicación:
10/2022
Editorial:
Oxford University Press
Revista:
Bulletin Of The London Mathematical Society
ISSN:
0024-6093
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We use Lie-theoretic methods to explicitly compute the full spectrum of the Laplace--Beltrami operator on homogeneous spheres which occur as geodesic distance spheres in (compact or noncompact) symmetric spaces of rank one, and provide a single unified formula for all cases. As an application, we find all resonant radii for distance spheres in the compact case, i.e., radii where there is bifurcation of embedded constant mean curvature spheres, and show that distance spheres are stable and locally rigid in the noncompact case.
Palabras clave:
CROSS
,
LAPLACE EIGENVALUE
,
GEODESIC SPHERES
,
BIFURCATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Bettiol, Renato G.; Lauret, Emilio Agustin; Piccione, Paolo; Full Laplace spectrum of distance spheres in symmetric spaces of rank one; Oxford University Press; Bulletin Of The London Mathematical Society; 54; 5; 10-2022; 1683-1704
Compartir
Altmétricas