Artículo
L infty-structure on Barzdell's complex for monomial algebras
Fecha de publicación:
05/2022
Editorial:
Elsevier Science
Revista:
Journal Of Pure And Applied Algebra
ISSN:
0022-4049
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let A be a monomial associative finite dimensional algebra over a field k of characteristic zero. It is well known that the Hochschild cohomology of A can be computed using Bardzell´s complex B(A). The aim of this article is to describe an explicit L∞-structure on B(A) that induces a weak equivalence of L∞-algebras between B(A) and the Hochschild complex C(A) of A. This allows us to describe the Maurer-Cartan equation in terms of elements of degree 2 in B(A). Finally, we make<br />concrete computations when A is a truncated algebra, and we prove that Bardzell´s complex for radical square zero algebras is in fact a dg-Lie algebra.
Palabras clave:
MONOMIAL ALGEBRAS
,
MAURER-CARTAN EQUATION
,
HOCHSCHILD COMPLEX
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Redondo, Maria Julia; Rossi Bertone, Fiorela; L infty-structure on Barzdell's complex for monomial algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 226; 5; 5-2022; 1-23; 106935
Compartir