Mostrar el registro sencillo del ítem

dc.contributor.author
Toloza, Julio Hugo  
dc.contributor.author
Ackermann, Sergio Alfredo  
dc.date.available
2023-05-05T13:40:20Z  
dc.date.issued
2022-12-03  
dc.identifier.citation
Toloza, Julio Hugo; Ackermann, Sergio Alfredo; The Dirichlet problem for perturbed Stark operators in the half-line; Springer; Analysis and Mathematical Physics; 13; 8; 3-12-2022; 1-32  
dc.identifier.issn
1664-2368  
dc.identifier.uri
http://hdl.handle.net/11336/196418  
dc.description.abstract
We consider the perturbed Stark operator Hqφ=−φ′′+xφ+q(x)φ , φ(0)=0 , in L2(R+) , where q is a real function that belongs to Ar={q∈Ar∩AC[0,∞):q′∈Ar} , where Ar=L2R(R+,(1+x)rdx) and r>1 is arbitrary but fixed. Let {λn(q)}∞n=1 and {κn(q)}∞n=1 be the spectrum and associated set of norming constants of Hq . Let {an}∞n=1 be the zeros of the Airy function of the first kind, and let ωr:N→R be defined by the rule ωr(n)=n−1/3log1/2n if r∈(1,2) and ωr(n)=n−1/3 if r∈[2,∞) . We prove that λn(q)=−an+π(−an)−1/2∫∞0Ai2(x+an)q(x)dx+O(n−1/3ω2r(n)) and κn(q)=−2π(−an)−1/2∫∞0Ai(x+an)Ai′(x+an)q(x)dx+O(ω3r(n)) , uniformly on bounded subsets of Ar . In order to obtain these asymptotic formulas, we first show that λn:Ar→R and κn:Ar→R are real analytic maps.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
STARK OPERATORS  
dc.subject
SPECTRAL THEORY  
dc.subject
ASYMPTOTIC ANALYSIS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The Dirichlet problem for perturbed Stark operators in the half-line  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-05-02T23:02:50Z  
dc.identifier.eissn
1664-235X  
dc.journal.volume
13  
dc.journal.number
8  
dc.journal.pagination
1-32  
dc.journal.pais
Suiza  
dc.journal.ciudad
Cham  
dc.description.fil
Fil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Ackermann, Sergio Alfredo. Universidad Autónoma Metropolitana; México  
dc.journal.title
Analysis and Mathematical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s13324-022-00767-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13324-022-00767-6