Artículo
Photovoltaic generation model as a function of weather variables using artificial intelligence techniques
Sánchez Reinoso, Carlos Roberto
; Cutrera, M.; Battioni, M.; Milone, Diego Humberto
; Buitrago, R. H.
Fecha de publicación:
10/2012
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
International Journal of Hydrogen Energy
ISSN:
0360-3199
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The optimisation of photovoltaic systems of electricity generation involve the necesity of real data of the different variables as well as determination of their relationships. In the field of photovoltaic solar energy there is interest to predict the energy generation in terms of solar radiation and climatic parameters. For this purpose, it is needed a good sensing and measurement of these parameters. In this paper, we propose a method based on artificial intelligence techniques for obtaining the generated energy under climatic conditions during a year. In addition, we propose a model that relates short-circuit current with radiation, considering the true nonlinear behavior of the relationship between variables. The results of the proposed method using real data show its validity and usefulness in predicting the generated energy by photovoltaic modules and the search for alternative methods of measuring global radiation at low cost and reasonable error.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Sánchez Reinoso, Carlos Roberto; Cutrera, M.; Battioni, M.; Milone, Diego Humberto; Buitrago, R. H.; Photovoltaic generation model as a function of weather variables using artificial intelligence techniques; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 37; 19; 10-2012; 14781-14785
Compartir
Altmétricas