Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data

Barber, Matias ErnestoIcon ; Grings, Francisco MatiasIcon ; Perna, Pablo AlejandroIcon ; Piscitelli, Marcela; Maas, Martín DanielIcon ; Bruscantini, Cintia AliciaIcon ; Jacobo Berlles, Julio César Alberto; Karszenbaum, HaydeeIcon
Fecha de publicación: 06/2012
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing
ISSN: 1939-1404
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

—Soil moisture retrieval from SAR images is always affected by speckle noise and uncertainties associated to soil parameters, which impact negatively on the accuracy of soil moisture estimates. In this paper a soil moisture Bayesian estimator from polarimetric SAR images is proposed to address these issues. This estimator is based on a set of statistical distributions derived for the polarimetric soil backscattering coefficients, which naturally includes models for the soil scattering, the speckle and the soil spatial heterogeneity. As a natural advantage of the Bayesian approach, prior information about soil condition can be easily included, enhancing the performance of the retrieval. The Oh’s model is used as scattering model, although it presents a limiting range of validity for the retrieval of soil moisture. After fully stating the mathematical modeling, numerical simulations are presented. First, traditional minimization-based retrieval is investigated. Then, it is compared with the Bayesian retrieval scheme. The results indicate that the Bayesian model enlarges the validity region of the minimizationbased procedure. Moreover, as speckle effects are reduced by multilooking, Bayesian retrieval approaches the minimization-based retrieval. On the other hand, when speckle effects are large, an improvement in the accuracy of the retrieval is achieved by using a precise prior. The proposed algorithm can be applied to investigate which are the optimum parameters regarding multilooking process and prior information required to perform a precise retrieval in a given soil condition.
Palabras clave: Soil Moisture , Radar Applications , Bayesian Methods , Synthetic Aperture Radar , Inverse Problems
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 373.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/19527
DOI: http://dx.doi.org/10.1109/JSTARS.2012.2191266
URL: http://ieeexplore.ieee.org/document/6227352/
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Barber, Matias Ernesto; Grings, Francisco Matias; Perna, Pablo Alejandro; Piscitelli, Marcela; Maas, Martín Daniel; et al.; Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 5; 3; 6-2012; 942-951
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES