Artículo
Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data
Barber, Matias Ernesto
; Grings, Francisco Matias
; Perna, Pablo Alejandro
; Piscitelli, Marcela; Maas, Martín Daniel
; Bruscantini, Cintia Alicia
; Jacobo Berlles, Julio César Alberto; Karszenbaum, Haydee
Fecha de publicación:
06/2012
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing
ISSN:
1939-1404
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
—Soil moisture retrieval from SAR images is always affected by speckle noise and uncertainties associated to soil parameters, which impact negatively on the accuracy of soil moisture estimates. In this paper a soil moisture Bayesian estimator from polarimetric SAR images is proposed to address these issues. This estimator
is based on a set of statistical distributions derived for the polarimetric soil backscattering coefficients, which naturally includes models for the soil scattering, the speckle and the soil spatial heterogeneity. As a natural advantage of the Bayesian approach, prior information about soil condition can be easily included, enhancing the performance of the retrieval. The Oh’s model is used as scattering
model, although it presents a limiting range of validity for the retrieval of soil moisture. After fully stating the mathematical modeling, numerical simulations are presented. First, traditional minimization-based retrieval is investigated. Then, it is compared with the Bayesian retrieval scheme. The results indicate that the
Bayesian model enlarges the validity region of the minimizationbased procedure. Moreover, as speckle effects are reduced by multilooking, Bayesian retrieval approaches the minimization-based retrieval. On the other hand, when speckle effects are large, an improvement in the accuracy of the retrieval is achieved by using a precise prior. The proposed algorithm can be applied to investigate
which are the optimum parameters regarding multilooking process and prior information required to perform a precise retrieval in a given soil condition.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Barber, Matias Ernesto; Grings, Francisco Matias; Perna, Pablo Alejandro; Piscitelli, Marcela; Maas, Martín Daniel; et al.; Speckle noise and soil heterogeneities as error sources in a Bayesian soil moisture retrieval scheme for SAR data; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 5; 3; 6-2012; 942-951
Compartir
Altmétricas