Artículo
A nonlocal 1-Laplacian problem and median values
Fecha de publicación:
2016
Editorial:
Universitat Autònoma de Barcelona
Revista:
Publicacions Matematiques
ISSN:
0214-1493
e-ISSN:
2014-4350
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we study solutions to a nonlocal 1-Laplacian equation given by
− Z ΩJ J(x − y) uψ(y) − u(x) |uψ(y) − u(x)| dy = 0 for x ∈ Ω
with u(x) = ψ(x) for x ∈ ΩJ \ Ω. We introduce two notions of solution and prove that the weaker of the two concepts is equivalent to a nonlocal median value property, where the median is determined by a measure related to J. We also show that solutions in the stronger sense are nonlocal analogues of local least gradient functions, in the sense that they minimize a nonlocal functional. In addition, we prove that solutions in the stronger sense converge to least gradient solutions when the kernel J is appropriately rescaled.
Palabras clave:
1-Laplacian
,
Mean Value
,
Least Gradient Functions
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Mazón, José M.; Pérez Pérez, Maria Teresa; Rossi, Julio Daniel; Toledo, Julián; A nonlocal 1-Laplacian problem and median values; Universitat Autònoma de Barcelona; Publicacions Matematiques; 60; 1; -1-2016; 27-53
Compartir
Altmétricas