Mostrar el registro sencillo del ítem

dc.contributor.author
Nelson, Tammie  
dc.contributor.author
Fernández Alberti, Sebastián  
dc.contributor.author
Chernyak, Vladimir  
dc.contributor.author
Roitberg, Adrián  
dc.contributor.author
Tretiak, Sergei  
dc.date.available
2023-04-19T12:49:50Z  
dc.date.issued
2012-01  
dc.identifier.citation
Nelson, Tammie; Fernández Alberti, Sebastián; Chernyak, Vladimir; Roitberg, Adrián; Tretiak, Sergei; Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters; American Institute of Physics; Journal of Chemical Physics; 136; 5; 1-2012  
dc.identifier.issn
0021-9606  
dc.identifier.uri
http://hdl.handle.net/11336/194503  
dc.description.abstract
Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential energy surfaces, often require a large number of independent trajectories in order to achieve the desired convergence of the results, and simulation relies on different parameters that should be tested and compared. In addition to influencing the speed of the simulation, the chosen parameters combined with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state molecular dynamics methodology employing Tullys fewest switches surface hopping algorithm. In this study, we seek to investigate the impact of the number of trajectories and the various parameters on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene) within our developed framework. Various user-defined parameters are analyzed: classical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics, and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations such as reduced number of nonadiabatic coupling terms and the classical path approximation are also investigated. Our analysis shows that, at least for the considered molecular system, a minimum of ∼400 independent trajectories should be calculated in order to achieve statistical averaging necessary for convergence of the calculated relaxation timescales.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
nonadiabatic molecular dynamics  
dc.subject
excited states  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-04-18T13:11:56Z  
dc.journal.volume
136  
dc.journal.number
5  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
American Institute of Physics  
dc.description.fil
Fil: Nelson, Tammie. Los Alamos National Laboratory; Estados Unidos  
dc.description.fil
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Chernyak, Vladimir. Wayne State University (wayne State University); Estados Unidos  
dc.description.fil
Fil: Roitberg, Adrián. University of Florida; Estados Unidos  
dc.description.fil
Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos  
dc.journal.title
Journal of Chemical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/full/10.1063/1.3680565  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1063/1.3680565