Mostrar el registro sencillo del ítem
dc.contributor.author
Larotonda, Gabriel Andrés
dc.date.available
2017-07-04T13:55:30Z
dc.date.issued
2007-12
dc.identifier.citation
Larotonda, Gabriel Andrés; Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators; Elsevier Science; Differential Geometry and its Applications; 25; 6; 12-2007; 679-700
dc.identifier.issn
0926-2245
dc.identifier.uri
http://hdl.handle.net/11336/19447
dc.description.abstract
We give a Riemannian structure to the set Σ of positive invertible unitized Hilbert–Schmidt operators, by means of the trace inner product. This metric makes of Σ a nonpositively curved, simply connected and metrically complete Hilbert manifold. The manifold Σ is a universal model for symmetric spaces of the noncompact type: any such space can be isometrically embedded into Σ. We give an intrinsic algebraic characterization of convex closed submanifolds M. We study the group of isometries of such submanifolds: we prove that GM, the Banach–Lie group generated by M, acts isometrically and transitively on M. Moreover, GM admits a polar decomposition relative to M, namely GM M × K as Hilbert manifolds (here K is the isotropy of p = 1 for the action Ig :p → gpg∗), and also GM/K M so M is an homogeneous space. We obtain several decomposition theorems by means of geodesically convex submanifolds M. These decompositions are obtained via a nonlinear but analytic orthogonal projection ΠM :Σ → M, a map which is a contraction for the geodesic distance. As a byproduct, we prove the isomorphism NM Σ (here NM stands for the normal bundle of a convex closed submanifold M). Writing down the factorizations for fixed ea, we obtain ea = ex evex with ex ∈ M and v orthogonal to M at p = 1. As a corollary we obtain decompositions for the full group of invertible elements G M × exp(T1M⊥) × K.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Exponential Metric Increasing Property
dc.subject
Hilbert-Schmidt Operator
dc.subject
Nonpositive Curvature
dc.subject
Short Geodesic
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-03T16:50:08Z
dc.journal.volume
25
dc.journal.number
6
dc.journal.pagination
679-700
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
dc.journal.title
Differential Geometry and its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224507000526
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.difgeo.2007.06.016
Archivos asociados