Mostrar el registro sencillo del ítem

dc.contributor.author
Savický, Petr  
dc.contributor.author
Cignoli, Roberto Leonardo Oscar  
dc.contributor.author
Esteva, Francesc  
dc.contributor.author
Godo, Lluis  
dc.contributor.author
Nogura, Carles  
dc.date.available
2017-07-03T22:00:57Z  
dc.date.issued
2006-12  
dc.identifier.citation
Savický, Petr; Cignoli, Roberto Leonardo Oscar; Esteva, Francesc; Godo, Lluis; Nogura, Carles; On Product Logic with Truth-constants; Oxford University Press; Journal Of Logic And Computation; 16; 2; 12-2006; 205-225  
dc.identifier.issn
0955-792X  
dc.identifier.uri
http://hdl.handle.net/11336/19435  
dc.description.abstract
Product Logic Π is an axiomatic extension of Hájek's Basic Fuzzy Logic BL coping with the 1-tautologies when the strong conjunction & and implication → are interpreted by the product of reals in [0, 1] and its residuum respectively. In this paper we investigate expansions of Product Logic by adding into the language a countable set of truth-constants (one truth-constant r\#304; for each r in a countable Π-subalgebra of [0, 1]) and by adding the corresponding book-keeping axioms for the truthconstants. We first show that the corresponding logics Π() are algebraizable, and hence complete with respect to the variety of Π()-algebras. The main result of the paper is the canonical standard completeness of these logics, that is, theorems of Π() are exactly the 1-tautologies of the algebra defined over the real unit interval where the truth-constants are interpreted as their own values. It is also shown that they do not enjoy the canonical strong standard completeness, but they enjoy it for finite theories when restricted to evaluated Π-formulas of the kind r\#304; → φ, where r\#304; is a truth-constant and φ a formula not containing truth-constants. Finally we consider the logics ΠΔ(), the expansion of Π() with the well-known Baaz's projection connective Δ, and we show canonical finite strong standard completeness for them.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On Product Logic with Truth-constants  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-03T16:50:03Z  
dc.journal.volume
16  
dc.journal.number
2  
dc.journal.pagination
205-225  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Savický, Petr. Academy of Sciences of the Czech Republic; República Checa  
dc.description.fil
Fil: Cignoli, Roberto Leonardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina  
dc.description.fil
Fil: Esteva, Francesc. Institut d’Investigacio en Intelligencia Artificial; España  
dc.description.fil
Fil: Godo, Lluis. Institut d’Investigacio en Intelligencia Artificial; España  
dc.description.fil
Fil: Nogura, Carles. Institut d’Investigacio en Intelligencia Artificial; España  
dc.journal.title
Journal Of Logic And Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/article-abstract/16/2/205/955422/On-Product-Logic-with-Truth-constants?redirectedFrom=fulltext  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/logcom/exi075