Mostrar el registro sencillo del ítem
dc.contributor.author
Savický, Petr
dc.contributor.author
Cignoli, Roberto Leonardo Oscar
dc.contributor.author
Esteva, Francesc
dc.contributor.author
Godo, Lluis
dc.contributor.author
Nogura, Carles
dc.date.available
2017-07-03T22:00:57Z
dc.date.issued
2006-12
dc.identifier.citation
Savický, Petr; Cignoli, Roberto Leonardo Oscar; Esteva, Francesc; Godo, Lluis; Nogura, Carles; On Product Logic with Truth-constants; Oxford University Press; Journal Of Logic And Computation; 16; 2; 12-2006; 205-225
dc.identifier.issn
0955-792X
dc.identifier.uri
http://hdl.handle.net/11336/19435
dc.description.abstract
Product Logic Π is an axiomatic extension of Hájek's Basic Fuzzy Logic BL coping with the 1-tautologies when the strong conjunction & and implication → are interpreted by the product of reals in [0, 1] and its residuum respectively. In this paper we investigate expansions of Product Logic by adding into the language a countable set of truth-constants (one truth-constant r\#304; for each r in a countable Π-subalgebra of [0, 1]) and by adding the corresponding book-keeping axioms for the truthconstants. We first show that the corresponding logics Π() are algebraizable, and hence complete with respect to the variety of Π()-algebras. The main result of the paper is the canonical standard completeness of these logics, that is, theorems of Π() are exactly the 1-tautologies of the algebra defined over the real unit interval where the truth-constants are interpreted as their own values. It is also shown that they do not enjoy the canonical strong standard completeness, but they enjoy it for finite theories when restricted to evaluated Π-formulas of the kind r\#304; → φ, where r\#304; is a truth-constant and φ a formula not containing truth-constants. Finally we consider the logics ΠΔ(), the expansion of Π() with the well-known Baaz's projection connective Δ, and we show canonical finite strong standard completeness for them.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On Product Logic with Truth-constants
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-03T16:50:03Z
dc.journal.volume
16
dc.journal.number
2
dc.journal.pagination
205-225
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Savický, Petr. Academy of Sciences of the Czech Republic; República Checa
dc.description.fil
Fil: Cignoli, Roberto Leonardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
dc.description.fil
Fil: Esteva, Francesc. Institut d’Investigacio en Intelligencia Artificial; España
dc.description.fil
Fil: Godo, Lluis. Institut d’Investigacio en Intelligencia Artificial; España
dc.description.fil
Fil: Nogura, Carles. Institut d’Investigacio en Intelligencia Artificial; España
dc.journal.title
Journal Of Logic And Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/article-abstract/16/2/205/955422/On-Product-Logic-with-Truth-constants?redirectedFrom=fulltext
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/logcom/exi075
Archivos asociados