Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Larotonda, Gabriel Andrés  
dc.date.available
2017-07-03T22:00:48Z  
dc.date.issued
2010-02  
dc.identifier.citation
Andruchow, Esteban; Larotonda, Gabriel Andrés; The rectifiable distance in the unitary Fredholm group; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 196; 2010; 2-2010; 151-178  
dc.identifier.issn
0039-3223  
dc.identifier.uri
http://hdl.handle.net/11336/19433  
dc.description.abstract
Let Uc(H)={u:u unitary and u−1 compact} stand for the unitary Fredholm group. We prove the following convexity result. Denote by d∞ the rectifiable distance induced by the Finsler metric given by the operator norm in Uc(H). If u0,u1,u∈Uc(H) and the geodesic β joining u0 and u1 in Uc(H) satisfy d∞(u,β)<π/2, then the map f(s)=d∞(u,β(s)) is convex for s∈[0,1]. In particular, the convexity radius of the geodesic balls in Uc(H) is π/4. The same convexity property holds in the p-Schatten unitary groups Up(H)={u:u unitary and u−1 in the p-Schatten class} for p an even integer, p≥4 (in this case, the distance is strictly convex). The same results hold in the unitary group of a C∗-algebra with a faithful finite trace. We apply this convexity result to establish the existence of curves of minimal length with given initial conditions, in the unitary orbit of an operator, under the action of the Fredholm group. We characterize self-adjoint operators A such that this orbit is a submanifold (of the affine space A+K(H), where K(H)=compact operators).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Polish Academy of Sciences. Institute of Mathematics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Convexity Radius  
dc.subject
Geodesic Convexity  
dc.subject
Short Path  
dc.subject
Unitary Fredholm Group  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The rectifiable distance in the unitary Fredholm group  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-03T16:49:55Z  
dc.journal.volume
196  
dc.journal.number
2010  
dc.journal.pagination
151-178  
dc.journal.pais
Polonia  
dc.journal.ciudad
Varsovia  
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina  
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina  
dc.journal.title
Studia Mathematica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0812.4475  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/sm196-2-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia-mathematica/all/196/2/90702/the-rectifiable-distance-in-the-unitary-fredholm-group