Artículo
Cyclic homology of Hopf crossed products
Fecha de publicación:
30/09/2009
Editorial:
Elsevier
Revista:
Advances in Mathematics
ISSN:
0001-8708
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We obtain a mixed complex, simpler than the canonical one, given the Hochschild, cyclic, negative and periodic homology of a crossed product E = A#f H, where H is an arbitrary Hopf algebra and f is a convolution invertible cocycle with values in A. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A which is stable under the action of H, and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homology of E relative to K. As an application we obtain two spectral sequences converging to the cyclic homology of E relative to K. The first one works in the general setting and the second one (which generalizes those previously found by several authors) works when f takes its values in K.
Palabras clave:
Cyclic Homology
,
Crossed Products
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Carboni, Graciela; Guccione, Juan Jose; Guccione, Juan Jose; Cyclic homology of Hopf crossed products; Elsevier; Advances in Mathematics; 223; 3; 30-9-2009; 840-872
Compartir
Altmétricas