Mostrar el registro sencillo del ítem

dc.contributor.author
Conde, Cristian Marcelo  
dc.contributor.author
Larotonda, Gabriel Andrés  
dc.date.available
2017-07-03T21:18:36Z  
dc.date.issued
2010-04  
dc.identifier.citation
Conde, Cristian Marcelo; Larotonda, Gabriel Andrés; Manifolds of semi-negative curvature; Wiley; Proceedings Of The London Mathematical Society; 100; 3; 4-2010; 670-704  
dc.identifier.issn
0024-6115  
dc.identifier.uri
http://hdl.handle.net/11336/19426  
dc.description.abstract
This paper studies the metric structure of manifolds of semi-negative curvature. Explicit estimates on the geodesic distance and sectional curvature are obtained in the setting of homogeneous spaces G/K of Banach–Lie groups, and a characterization of convex homogeneous submanifolds is given in terms of the Banach–Lie algebras. A splitting theorem via convex expansive submanifolds is proved, inducing the corresponding splitting of the Banach–Lie group G. The notion of nonpositive curvature in Alexandrov's sense is extended to include p-uniformly convex Banach spaces, and manifolds of semi-negative curvature with a p-uniformly convex tangent norm fall in this class of nonpositively curved spaces. Several well-known results, such as the existence and uniqueness of best approximations from convex closed sets, or the Bruhat–Tits fixed-point theorem, are shown to hold in this setting, without dimension restrictions. Finally, these notions are used to study the structure of the classical Banach–Lie groups of bounded linear operators acting on a Hilbert space, and the splittings induced by conditional expectations in such a setting.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Homogeneous Manifold  
dc.subject
Nonpositive Curvature  
dc.subject
Positive Operator  
dc.subject
Short Geodesic  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Manifolds of semi-negative curvature  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-03T16:49:54Z  
dc.journal.volume
100  
dc.journal.number
3  
dc.journal.pagination
670-704  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina  
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina  
dc.journal.title
Proceedings Of The London Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/plms/pdp042/abstract  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1112/plms/pdp042