Mostrar el registro sencillo del ítem
dc.contributor.author
Conde, Cristian Marcelo
dc.contributor.author
Larotonda, Gabriel Andrés
dc.date.available
2017-07-03T21:18:36Z
dc.date.issued
2010-04
dc.identifier.citation
Conde, Cristian Marcelo; Larotonda, Gabriel Andrés; Manifolds of semi-negative curvature; Wiley; Proceedings Of The London Mathematical Society; 100; 3; 4-2010; 670-704
dc.identifier.issn
0024-6115
dc.identifier.uri
http://hdl.handle.net/11336/19426
dc.description.abstract
This paper studies the metric structure of manifolds of semi-negative curvature. Explicit estimates on the geodesic distance and sectional curvature are obtained in the setting of homogeneous spaces G/K of Banach–Lie groups, and a characterization of convex homogeneous submanifolds is given in terms of the Banach–Lie algebras. A splitting theorem via convex expansive submanifolds is proved, inducing the corresponding splitting of the Banach–Lie group G. The notion of nonpositive curvature in Alexandrov's sense is extended to include p-uniformly convex Banach spaces, and manifolds of semi-negative curvature with a p-uniformly convex tangent norm fall in this class of nonpositively curved spaces. Several well-known results, such as the existence and uniqueness of best approximations from convex closed sets, or the Bruhat–Tits fixed-point theorem, are shown to hold in this setting, without dimension restrictions. Finally, these notions are used to study the structure of the classical Banach–Lie groups of bounded linear operators acting on a Hilbert space, and the splittings induced by conditional expectations in such a setting.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Homogeneous Manifold
dc.subject
Nonpositive Curvature
dc.subject
Positive Operator
dc.subject
Short Geodesic
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Manifolds of semi-negative curvature
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-03T16:49:54Z
dc.journal.volume
100
dc.journal.number
3
dc.journal.pagination
670-704
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
dc.journal.title
Proceedings Of The London Mathematical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/plms/pdp042/abstract
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1112/plms/pdp042
Archivos asociados