Show simple item record

dc.contributor.author Conde, Cristian Marcelo
dc.contributor.author Larotonda, Gabriel Andrés
dc.date.available 2017-07-03T21:18:36Z
dc.date.issued 2010-04
dc.identifier.citation Conde, Cristian Marcelo; Larotonda, Gabriel Andrés; Manifolds of semi-negative curvature; Wiley; Proceedings Of The London Mathematical Society; 100; 3; 4-2010; 670-704
dc.identifier.issn 0024-6115
dc.identifier.uri http://hdl.handle.net/11336/19426
dc.description.abstract This paper studies the metric structure of manifolds of semi-negative curvature. Explicit estimates on the geodesic distance and sectional curvature are obtained in the setting of homogeneous spaces G/K of Banach–Lie groups, and a characterization of convex homogeneous submanifolds is given in terms of the Banach–Lie algebras. A splitting theorem via convex expansive submanifolds is proved, inducing the corresponding splitting of the Banach–Lie group G. The notion of nonpositive curvature in Alexandrov's sense is extended to include p-uniformly convex Banach spaces, and manifolds of semi-negative curvature with a p-uniformly convex tangent norm fall in this class of nonpositively curved spaces. Several well-known results, such as the existence and uniqueness of best approximations from convex closed sets, or the Bruhat–Tits fixed-point theorem, are shown to hold in this setting, without dimension restrictions. Finally, these notions are used to study the structure of the classical Banach–Lie groups of bounded linear operators acting on a Hilbert space, and the splittings induced by conditional expectations in such a setting.
dc.format application/pdf
dc.language.iso eng
dc.publisher Wiley
dc.rights info:eu-repo/semantics/openAccess
dc.rights.uri https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject Homogeneous manifold
dc.subject Nonpositive curvature
dc.subject Positive operator
dc.subject Short geodesic
dc.subject.classification Matemática Pura
dc.subject.classification Matemáticas
dc.subject.classification CIENCIAS NATURALES Y EXACTAS
dc.title Manifolds of semi-negative curvature
dc.type info:eu-repo/semantics/article
dc.type info:ar-repo/semantics/artículo
dc.type info:eu-repo/semantics/publishedVersion
dc.date.updated 2017-07-03T16:49:54Z
dc.journal.volume 100
dc.journal.number 3
dc.journal.pagination 670-704
dc.journal.pais Reino Unido
dc.journal.ciudad Londres
dc.description.fil Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
dc.description.fil Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
dc.journal.title Proceedings Of The London Mathematical Society
dc.relation.alternativeid info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/plms/pdp042/abstract
dc.relation.alternativeid info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1112/plms/pdp042


Archivos asociados

This item appears in the following Collection(s)

  • Articulos(IAM) [206]
    Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"

Show simple item record

info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)