Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Information flow in Deep Restricted Boltzmann Machines: An analysis of mutual information between inputs and outputs

Vera, Matías AlejandroIcon ; Rey Vega, Leonardo JavierIcon ; Piantanida, Pablo
Fecha de publicación: 10/2022
Editorial: Elsevier Science
Revista: Neurocomputing
ISSN: 0925-2312
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Empirical evidence suggests the existence of an entangled relationship between the information flow from inputs features to hidden representations of a deep neural network and its ability to generalize from training samples to unobserved data. For instance, regularization techniques often used to control statistical generalization, are expected to impact this information flow. In this work, we study MI (mutual information) between inputs and representation outputs, and its relationship with various regularization methods commonly used in Restricted Boltzmann Machines (RBM) and their generalizations: Deep Belief Networks and Deep Boltzmann Machines. Our theoretical findings show the existence of fundamental connections between the hyperparameters associated with the regularization and the MI, including relevant practical ingredients such as: network dimension, matrix norms and dropout probability, which are well-known to influence the generalization ability of the network. These results are experimentally corroborated on various visual datasets.
Palabras clave: GRAPHICAL MODELS , MUTUAL INFORMATION , REGULARIZATION , RESTRICTED BOLTZMANN MACHINE , UNSUPERVISED LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 1.705Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/193980
DOI: https://doi.org/10.1016/j.neucom.2022.08.014
URL: https://www.sciencedirect.com/science/article/abs/pii/S0925231222009833
Colecciones
Articulos(CSC)
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
Vera, Matías Alejandro; Rey Vega, Leonardo Javier; Piantanida, Pablo; Information flow in Deep Restricted Boltzmann Machines: An analysis of mutual information between inputs and outputs; Elsevier Science; Neurocomputing; 507; 10-2022; 235-246
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES