Mostrar el registro sencillo del ítem

dc.contributor.author
Arouxet, Maria Belen  
dc.contributor.author
Echebest, Nélida Ester  
dc.contributor.author
Pilotta, Elvio Angel  
dc.date.available
2023-04-14T18:10:41Z  
dc.date.issued
2011-01  
dc.identifier.citation
Arouxet, Maria Belen; Echebest, Nélida Ester; Pilotta, Elvio Angel; Active-set strategy in Powell's method for optimization without derivatives; Sociedade Brasileira de Matemática Aplicada e Computacional; Computational And Applied Mathematics; 30; 1; 1-2011; 171-196  
dc.identifier.issn
0101-8205  
dc.identifier.uri
http://hdl.handle.net/11336/193948  
dc.description.abstract
In this article we present an algorithm for solving bound constrained optimization problems without derivatives based on Powell´s method [38] for derivative-free optimization. First we consider the unconstrained optimization problem. At each iteration a quadratic interpolation model of the objective function is constructed around the current iterate and this model is minimized to obtain a new trial point. The whole process is embedded within a trust-region framework. Our algorithm uses infinity norm instead of the Euclidean norm and we solve a box constrained quadratic subproblem using an active-set strategy to explore faces of the box. Therefore, a bound constrained optimization algorithm is easily extended. We compare our implementation with NEWUOA and BOBYQA, Powell´s algorithms for unconstrained and bound constrained derivative free optimization respectively. Numerical experiments show that, in general, our algorithm require less functional evaluations than Powell´s algorithms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sociedade Brasileira de Matemática Aplicada e Computacional  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
derivative-free optimization  
dc.subject
active-set method  
dc.subject
spectral gradient method  
dc.subject
polinomial interpolation  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Active-set strategy in Powell's method for optimization without derivatives  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-04-10T10:11:07Z  
dc.journal.volume
30  
dc.journal.number
1  
dc.journal.pagination
171-196  
dc.journal.pais
Brasil  
dc.description.fil
Fil: Arouxet, Maria Belen. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Echebest, Nélida Ester. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Pilotta, Elvio Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; Argentina  
dc.journal.title
Computational And Applied Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.scielo.br/j/cam/a/GwBm3thcKBWgzMM3TRg968b/?lang=en  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1590/S1807-03022011000100009