Mostrar el registro sencillo del ítem
dc.contributor.author
Flesia, Ana Georgina
dc.date.available
2023-04-13T10:31:36Z
dc.date.issued
2021
dc.identifier.citation
Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis; SMB 2021 Annual Meeting; Riverside; Estados Unidos; 2021; 1-2
dc.identifier.uri
http://hdl.handle.net/11336/193598
dc.description.abstract
Recently, biologists have shown fractal and oscillatory characteristics in animal behaviortime series. Aspects so different can be explained by a model with added components thatinclude deterministic cycles (ultradian and circadian rhythms), polynomial tendencies, and anunderlying nonlinear process with stationary increments. Such components can be extractedfrom the data using wavelet analysis by selecting the transformation appropriately. In this talk, we will discuss a five-step method that describes the data without making any parametric assumptions about trends in the frequency or amplitude of the components signals and is resilient to noise.1. Visual inspection by Continuous wavelet transform based on real Gaussian motherwavelet in the Cartesian time scale plane2. Visual inspection by Continuous wavelet transform based on complex Morlet motherwavelet in the Polar time scale plane.3. Modal frequency detection by Synchrosqueezed wavelet transform, a linear timescale analysis followed by a synchrosqueezing technique.4. Modal frequency corroboration by Empirical wavelet transform, a wavelet analysis in theFourier domain followed by frequency segmentation to extract the modal components.5- Quantification of coherence and phase difference between different series.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Society for Mathematical Biology
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
WAVELET
dc.subject
ULTRADIAN RHYTHMS
dc.subject
ANIMAL BEHAVIOR
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Boosting confidence in detecting time-dependent ultradian rhythms using wavelet analysis
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-11-09T16:52:21Z
dc.journal.pagination
1-2
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Riverside
dc.description.fil
Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://2021.smb.org/NEUR/NEUR-CT09.html#author2
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Encuentro
dc.description.nombreEvento
SMB 2021 Annual Meeting
dc.date.evento
2021-06-13
dc.description.ciudadEvento
Riverside
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Society for Mathematical Biology
dc.description.institucionOrganizadora
University of California
dc.source.revista
SMB 2021 Annual Meeting
dc.date.eventoHasta
2021-06-17
dc.type
Encuentro
Archivos asociados