Artículo
Yaglom limit via Holley inequality
Fecha de publicación:
2015
Editorial:
Brazilian Statistical Association
Revista:
Brazilian Journal Of Probability And Statistics
ISSN:
0103-0752
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let SS be a countable set provided with a partial order and a minimal element. Consider a Markov chain on S∪{0}S∪{0} absorbed at 00 with a quasi-stationary distribution. We use Holley inequality to obtain sufficient conditions under which the following hold. The trajectory of the chain starting from the minimal state is stochastically dominated by the trajectory of the chain starting from any probability on SS, when both are conditioned to nonabsorption until a certain time. Moreover, the Yaglom limit corresponding to this deterministic initial condition is the unique minimal quasi-stationary distribution in the sense of stochastic order. As an application, we provide new proofs to classical results in the field.
Palabras clave:
Yaglom Limit
,
Holley Inequality
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Ferrari, Pablo Augusto; Trivellato Rolla, Leonardo; Yaglom limit via Holley inequality; Brazilian Statistical Association; Brazilian Journal Of Probability And Statistics; 29; 2; -1-2015; 413-423
Compartir
Altmétricas