Mostrar el registro sencillo del ítem
dc.contributor.author
Berrendero, J. R.
dc.contributor.author
Justel, Ana
dc.contributor.author
Svarc, Marcela
dc.date.available
2023-04-12T14:55:13Z
dc.date.issued
2011-09
dc.identifier.citation
Berrendero, J. R.; Justel, Ana; Svarc, Marcela; Multvariate Principal Components for Functional Data; Elsevier Science; Computational Statistics and Data Analysis; 55; 9; 9-2011; 2619-2634
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/193485
dc.description.abstract
A principal component method for multivariate functional data is proposed. Data can be arranged in a matrix whose elements are functions so that for each individual a vector of p functions is observed. This set of p curves is reduced to a small number of transformed functions, retaining as much information as possible. The criterion to measure the information loss is the integrated variance. Under mild regular conditions, it is proved that if the original functions are smooth this property is inherited by the principal components. A numerical procedure to obtain the smooth principal components is proposed and the goodness of the dimension reduction is assessed by two new measures of the proportion of explained variability. The method performs as expected in various controlled simulated data sets and provides interesting conclusions when it is applied to real data sets.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DIMENSION REDUCTION
dc.subject
EIGENVALUE FUNCTIONS
dc.subject
EXPLAINED VARIABILITY
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multvariate Principal Components for Functional Data
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-04-11T12:00:47Z
dc.journal.volume
55
dc.journal.number
9
dc.journal.pagination
2619-2634
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Berrendero, J. R.. Universidad Autónoma de Madrid. Facultad de Ciencias; España
dc.description.fil
Fil: Justel, Ana. Universidad Autónoma de Madrid. Facultad de Ciencias; España
dc.description.fil
Fil: Svarc, Marcela. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Computational Statistics and Data Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947311001022
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2011.03.011
Archivos asociados