Mostrar el registro sencillo del ítem

dc.contributor.author
Berrendero, J. R.  
dc.contributor.author
Justel, Ana  
dc.contributor.author
Svarc, Marcela  
dc.date.available
2023-04-12T14:55:13Z  
dc.date.issued
2011-09  
dc.identifier.citation
Berrendero, J. R.; Justel, Ana; Svarc, Marcela; Multvariate Principal Components for Functional Data; Elsevier Science; Computational Statistics and Data Analysis; 55; 9; 9-2011; 2619-2634  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/193485  
dc.description.abstract
A principal component method for multivariate functional data is proposed. Data can be arranged in a matrix whose elements are functions so that for each individual a vector of p functions is observed. This set of p curves is reduced to a small number of transformed functions, retaining as much information as possible. The criterion to measure the information loss is the integrated variance. Under mild regular conditions, it is proved that if the original functions are smooth this property is inherited by the principal components. A numerical procedure to obtain the smooth principal components is proposed and the goodness of the dimension reduction is assessed by two new measures of the proportion of explained variability. The method performs as expected in various controlled simulated data sets and provides interesting conclusions when it is applied to real data sets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIMENSION REDUCTION  
dc.subject
EIGENVALUE FUNCTIONS  
dc.subject
EXPLAINED VARIABILITY  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multvariate Principal Components for Functional Data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-04-11T12:00:47Z  
dc.journal.volume
55  
dc.journal.number
9  
dc.journal.pagination
2619-2634  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Berrendero, J. R.. Universidad Autónoma de Madrid. Facultad de Ciencias; España  
dc.description.fil
Fil: Justel, Ana. Universidad Autónoma de Madrid. Facultad de Ciencias; España  
dc.description.fil
Fil: Svarc, Marcela. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Computational Statistics and Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947311001022  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2011.03.011