Mostrar el registro sencillo del ítem

dc.contributor.author
Tarifa, Enrique Eduardo  
dc.contributor.author
Álvaro, F. Núñez  
dc.contributor.author
Franco, Samuel  
dc.contributor.author
Mussati, Sergio Fabian  
dc.date.available
2023-04-05T15:30:01Z  
dc.date.issued
2010-09  
dc.identifier.citation
Tarifa, Enrique Eduardo; Álvaro, F. Núñez; Franco, Samuel; Mussati, Sergio Fabian; Fault diagnosis for an MSF desalination plant by using Bayesian networks; Desalination; Desalination and Water Treatment; 21; 1-3; 9-2010; 102-108  
dc.identifier.issn
1944-3994  
dc.identifier.uri
http://hdl.handle.net/11336/192855  
dc.description.abstract
This work outlines the development of a fault diagnostic system for an MSF (multi-stage flash) desalination plant by using BNs (Bayesian networks). This diagnostic system processes the plant data to determine whether the process state is normal or not. In the latter case, the diagnostic system determines the cause of the abnormal process state; i.e., it finds out which is the fault that is affecting the supervised process. A BN is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. A BN readily handles situations where some data entries are missing. This paper determines both the structure and parameters of a BN intended for a diagnostic system. The implemented system is evaluated by using a dynamic simulator, which was developed for a real MSF desalination plant. Besides, the diagnostic system performance is compared with the performances of two other diagnostic systems. The obtained results show some advantages for the BN based diagnostic system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Desalination  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BAYESIAN NETWORKS  
dc.subject
DYNAMIC SIMULATION  
dc.subject
FAULT DIAGNOSIS  
dc.subject
MSF DESALINATION PLANT  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Fault diagnosis for an MSF desalination plant by using Bayesian networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-04-04T11:38:06Z  
dc.journal.volume
21  
dc.journal.number
1-3  
dc.journal.pagination
102-108  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Hopkinton  
dc.description.fil
Fil: Tarifa, Enrique Eduardo. Universidad Nacional de Jujuy; Argentina  
dc.description.fil
Fil: Álvaro, F. Núñez. Universidad Nacional de Jujuy; Argentina  
dc.description.fil
Fil: Franco, Samuel. Universidad Nacional de Jujuy; Argentina  
dc.description.fil
Fil: Mussati, Sergio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Desalination and Water Treatment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5004/dwt.2010.1265  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.5004/dwt.2010.1265