Mostrar el registro sencillo del ítem
dc.contributor.author
Tarifa, Enrique Eduardo
dc.contributor.author
Álvaro, F. Núñez
dc.contributor.author
Franco, Samuel
dc.contributor.author
Mussati, Sergio Fabian
dc.date.available
2023-04-05T15:30:01Z
dc.date.issued
2010-09
dc.identifier.citation
Tarifa, Enrique Eduardo; Álvaro, F. Núñez; Franco, Samuel; Mussati, Sergio Fabian; Fault diagnosis for an MSF desalination plant by using Bayesian networks; Desalination; Desalination and Water Treatment; 21; 1-3; 9-2010; 102-108
dc.identifier.issn
1944-3994
dc.identifier.uri
http://hdl.handle.net/11336/192855
dc.description.abstract
This work outlines the development of a fault diagnostic system for an MSF (multi-stage flash) desalination plant by using BNs (Bayesian networks). This diagnostic system processes the plant data to determine whether the process state is normal or not. In the latter case, the diagnostic system determines the cause of the abnormal process state; i.e., it finds out which is the fault that is affecting the supervised process. A BN is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. A BN readily handles situations where some data entries are missing. This paper determines both the structure and parameters of a BN intended for a diagnostic system. The implemented system is evaluated by using a dynamic simulator, which was developed for a real MSF desalination plant. Besides, the diagnostic system performance is compared with the performances of two other diagnostic systems. The obtained results show some advantages for the BN based diagnostic system.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Desalination
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BAYESIAN NETWORKS
dc.subject
DYNAMIC SIMULATION
dc.subject
FAULT DIAGNOSIS
dc.subject
MSF DESALINATION PLANT
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Fault diagnosis for an MSF desalination plant by using Bayesian networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-04-04T11:38:06Z
dc.journal.volume
21
dc.journal.number
1-3
dc.journal.pagination
102-108
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Hopkinton
dc.description.fil
Fil: Tarifa, Enrique Eduardo. Universidad Nacional de Jujuy; Argentina
dc.description.fil
Fil: Álvaro, F. Núñez. Universidad Nacional de Jujuy; Argentina
dc.description.fil
Fil: Franco, Samuel. Universidad Nacional de Jujuy; Argentina
dc.description.fil
Fil: Mussati, Sergio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Desalination and Water Treatment
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5004/dwt.2010.1265
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.5004/dwt.2010.1265
Archivos asociados