Mostrar el registro sencillo del ítem
dc.contributor.author
Pascuet, Maria Ines Magdalena
dc.contributor.author
Castin, N.
dc.contributor.author
Becquart, C.S.
dc.contributor.author
Malerba, L.
dc.date.available
2023-03-29T16:08:26Z
dc.date.issued
2011-05
dc.identifier.citation
Pascuet, Maria Ines Magdalena; Castin, N.; Becquart, C.S.; Malerba, L.; Stability and mobility of Cu-vacancy clusters in Fe-Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations; Elsevier Science; Journal of Nuclear Materials; 412; 1; 5-2011; 106-115
dc.identifier.issn
0022-3115
dc.identifier.uri
http://hdl.handle.net/11336/192059
dc.description.abstract
An atomistic kinetic Monte Carlo (AKMC) method has been applied to study the stability and mobility of copper-vacancy clusters in Fe. This information, which cannot be obtained directly from experimental measurements, is needed to parameterise models describing the nanostructure evolution under irradiation of Fe alloys (e.g. model alloys for reactor pressure vessel steels). The physical reliability of the AKMC method has been improved by employing artificial intelligence techniques for the regression of the activation energies required by the model as input. These energies are calculated allowing for the effects of local chemistry and relaxation, using an interatomic potential fitted to reproduce them as accurately as possible and the nudged-elastic-band method. The model validation was based on comparison with available ab initio calculations for verification of the used cohesive model, as well as with other models and theories.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Cuvacancy clusters
dc.subject
FeCu alloys
dc.subject
Atomistic kinetic Monte Carlo
dc.subject
Artificial neural networks
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Stability and mobility of Cu-vacancy clusters in Fe-Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-03-23T12:35:18Z
dc.journal.volume
412
dc.journal.number
1
dc.journal.pagination
106-115
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Castin, N.. Université Libre de Bruxelles; Bélgica
dc.description.fil
Fil: Becquart, C.S.. Université de Lille; Francia
dc.description.fil
Fil: Malerba, L.. No especifíca;
dc.journal.title
Journal of Nuclear Materials
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022311511002352
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jnucmat.2011.02.038
Archivos asociados