Mostrar el registro sencillo del ítem

dc.contributor.author
Pascuet, Maria Ines Magdalena  
dc.contributor.author
Castin, N.  
dc.contributor.author
Becquart, C.S.  
dc.contributor.author
Malerba, L.  
dc.date.available
2023-03-29T16:08:26Z  
dc.date.issued
2011-05  
dc.identifier.citation
Pascuet, Maria Ines Magdalena; Castin, N.; Becquart, C.S.; Malerba, L.; Stability and mobility of Cu-vacancy clusters in Fe-Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations; Elsevier Science; Journal of Nuclear Materials; 412; 1; 5-2011; 106-115  
dc.identifier.issn
0022-3115  
dc.identifier.uri
http://hdl.handle.net/11336/192059  
dc.description.abstract
An atomistic kinetic Monte Carlo (AKMC) method has been applied to study the stability and mobility of copper-vacancy clusters in Fe. This information, which cannot be obtained directly from experimental measurements, is needed to parameterise models describing the nanostructure evolution under irradiation of Fe alloys (e.g. model alloys for reactor pressure vessel steels). The physical reliability of the AKMC method has been improved by employing artificial intelligence techniques for the regression of the activation energies required by the model as input. These energies are calculated allowing for the effects of local chemistry and relaxation, using an interatomic potential fitted to reproduce them as accurately as possible and the nudged-elastic-band method. The model validation was based on comparison with available ab initio calculations for verification of the used cohesive model, as well as with other models and theories.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cuvacancy clusters  
dc.subject
FeCu alloys  
dc.subject
Atomistic kinetic Monte Carlo  
dc.subject
Artificial neural networks  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Stability and mobility of Cu-vacancy clusters in Fe-Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-03-23T12:35:18Z  
dc.journal.volume
412  
dc.journal.number
1  
dc.journal.pagination
106-115  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Castin, N.. Université Libre de Bruxelles; Bélgica  
dc.description.fil
Fil: Becquart, C.S.. Université de Lille; Francia  
dc.description.fil
Fil: Malerba, L.. No especifíca;  
dc.journal.title
Journal of Nuclear Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022311511002352  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jnucmat.2011.02.038