Artículo
Analyzing complex networks evolution through Information Theory quantifiers
Fecha de publicación:
01/2011
Editorial:
Elsevier Science
Revista:
Physics Letters A
ISSN:
0375-9601
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.
Palabras clave:
COMPLEX NETWORKS
,
JENSEN-SHANNON DIVERGENCE
,
STATISTICAL COMPLEXITY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Carpi, Laura C.; Rosso, Osvaldo Anibal; Saco, Patricia M.; Gómez Ravetti, Martín; Analyzing complex networks evolution through Information Theory quantifiers; Elsevier Science; Physics Letters A; 375; 4; 1-2011; 801-804
Compartir
Altmétricas