Artículo
Spectral theory of the Atiyah-Patodi-Singer operator on compact flat manifolds
Fecha de publicación:
05/2011
Editorial:
Springer
Revista:
The Journal Of Geometric Analysis
ISSN:
1050-6926
e-ISSN:
1559-002X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the spectral theory of the Dirac-type boundary operator D defined by Atiyah, Patodi, and Singer, acting on smooth even forms of a compact flat Riemannian manifold M. We give an explicit formula for the multiplicities of the eigenvalues of D in terms of values of characters of exterior representations of SO(n), where n = dim M. As a consequence, we give large families of D-isospectral flat manifolds that are non-homeomorphic to each other. Furthermore, we derive expressions for the eta series in terms of special values of Hurwitz zeta functions and, as a result, we obtain a simple explicit expression of the eta invariant. © Mathematica Josephina, Inc. 2011.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Miatello, Roberto Jorge; Podestá, Ricardo César; Spectral theory of the Atiyah-Patodi-Singer operator on compact flat manifolds; Springer; The Journal Of Geometric Analysis; 22; 4; 5-2011; 1027-1054
Compartir
Altmétricas