Artículo
On minimal vertex separators of dually chordal graphs: properties and characterizations
Fecha de publicación:
03/2012
Editorial:
Elsevier Science
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Many works related to dually chordal graphs, their cliques and neighborhoods were published by Brandstädt et al. (1998) [1] and Gutierrez (1996) [6]. We will undertake a similar study by considering minimal vertex separators and their properties instead. We find a necessary and sufficient condition for every minimal vertex separator to be contained in the closed neighborhood of a vertex and two major characterizations of dually chordal graphs are proved. The first states that a graph is dually chordal if and only if it possesses a spanning tree such that every minimal vertex separator induces a subtree. The second says that a graph is dually chordal if and only if the family of minimal vertex separators is Helly, its intersection graph is chordal and each of its members induces a connected subgraph. We also found adaptations for them, requiring just O(|E(G)|) minimal vertex separators if they are conveniently chosen. We obtain at the end a proof of a known characterization of the class of hereditary dually chordal graphs that relies on the properties of minimal vertex separators.
Palabras clave:
CHORDAL
,
CLIQUE
,
DUALLY CHORDAL
,
NEIGHBORHOOD
,
SEPARATOR
,
TREE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
de Caria, Pablo Jesús; Gutierrez, Marisa; On minimal vertex separators of dually chordal graphs: properties and characterizations; Elsevier Science; Discrete Applied Mathematics; 160; 18; 3-2012; 2627-2635
Compartir
Altmétricas