Artículo
H-theorems for the Brownian motion on the hyperbolic plane
Fecha de publicación:
09/2012
Editorial:
Elsevier Science
Revista:
Physica A: Statistical Mechanics and its Applications
ISSN:
0378-4371
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study H-theorems associated with the Brownian motion with constant drift on the hyperbolic plane. Since this random process satisfies a linear FokkerPlanck equation, it is easy to show that, up to a proper scaling, its Shannon entropy is increasing over time. As a consequence, its distribution is converging to a maximum Shannon entropy distribution which is also shown to be related to the non-extensive statistics. In a second part, relying on a theorem by Shiino, we extend this result to the case of Tsallis entropies: we show that under a variance-like constraint, the Tsallis entropy of the Brownian motion on the hyperbolic plane is increasing provided that the non-extensivity parameter of this entropy is properly chosen in terms of the drift of the Brownian motion.
Palabras clave:
BROWNIAN MOTION
,
H-THEOREM
,
HYPERBOLIC PLANE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Vignat, C.; Lamberti, Pedro Walter; H-theorems for the Brownian motion on the hyperbolic plane; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 391; 3; 9-2012; 544-551
Compartir
Altmétricas