Artículo
On commuting matrices in Max algebra and in classical nonnegative algebra
Fecha de publicación:
09/2012
Editorial:
Elsevier Science Inc.
Revista:
Linear Algebra and its Applications
ISSN:
0024-3795
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper studies commuting matrices in max algebra and nonnegative linear algebra. Our starting point is the existence of a common eigenvector which directly leads to max analogs and nonnegative analogs of some classical results for complex matrices. We also investigate Frobenius normal forms of commuting matrices, particularly when the Perron roots of the components are distinct. For the case of max algebra, we show how the intersection of eigencones of commuting matrices can be described and we consider connections with Boolean algebra which enables us to prove that two commuting irreducible matrices in max algebra have a common eigennode.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Katz, Ricardo David; Schneider, Hans; Sergeev, Sergei; On commuting matrices in Max algebra and in classical nonnegative algebra; Elsevier Science Inc.; Linear Algebra and its Applications; 436; 2; 9-2012; 276-292
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Pelaitay, Gustavo Andrés ; Zuluaga Botero, William Javier (Springer, 2023-08)
-
Herscovich Ramoneda, Estanislao Benito (Univ Bielefeld, 2013-12)
-
Artículo Semi-Nelson AlgebrasCornejo, Juan Manuel ; Viglizzo, Ignacio Dario (Springer, 2016-11)