Artículo
Asymptotic Behavior for a nonlocal diffusion equation on the half line
Fecha de publicación:
04/2015
Editorial:
Amer Inst Mathematical Sciences
Revista:
Discrete And Continuous Dynamical Systems
ISSN:
1078-0947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the large time behavior of solutions to a nonlocal diffusion equation, ut=J∗u−u with J smooth, radially symmetric and compactly supported, posed in R+ with zero Dirichlet boundary conditions. In the far-field scale, ξ1≤xt−1/2≤ξ2 with ξ1,ξ2>0, the asymptotic behavior is given by a multiple of the dipole solution for the local heat equation, hence tu(x,t) is bounded above and below by positive constants in this region for large times. The proportionality constant is determined from a conservation law, related to the asymptotic first momentum. In compact sets, after scaling the solution by a factor t3/2, it converges to a multiple of the unique stationary solution of the problem that behaves as x at infinity. The precise proportionality factor is obtained through a matching procedure with the far-field limit. Finally, in the very far-field, x≥t1/2g(t) with g(t)→∞, the solution is proved to be of order o(t−1).
Palabras clave:
Nonlocal Diffusion
,
Asymptotic Behavior
,
Matched Asymptotics
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemi Irene; Asymptotic Behavior for a nonlocal diffusion equation on the half line; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 35; 4; 4-2015; 1391-1407
Compartir
Altmétricas