Artículo
Multivariable Schur-Horn theorems
Fecha de publicación:
02/2016
Editorial:
London Mathematical Society
Revista:
Proceedings Of The London Mathematical Society
ISSN:
0024-6115
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove a variety of results describing the diagonals of tuples of commuting hermitian operators in type II 1 1 factors. These results, motivated by work of Arveson and Kadison, are generalizations of the classical Schur-Horn theorem to the infinite-dimensional, multivariable setting. Our description of these possible diagonals uses a natural generalization of the classical notion of majorization. In the special case when both the given tuple and the desired diagonal have finite joint spectrum, our results are complete. When the tuples do not have finite joint spectrum, we are able to prove strong approximate results. Unlike the single variable case, the multivariable case presents several surprises and we point out obstructions to extending our complete description in the finite spectrum case to the general case. We also discuss the problem of characterizing diagonals of commuting tuples in B ( H ) B(H) and give approximate characterizations in this case as well.
Palabras clave:
Joint Majorization
,
Schur-Horn Theorem
,
Ii_1 Factors
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Massey, Pedro Gustavo; Ravichandran, Mohan; Multivariable Schur-Horn theorems; London Mathematical Society; Proceedings Of The London Mathematical Society; 112; 1; 2-2016; 206-234
Compartir
Altmétricas